

http://cmer.uoguelph.ca

Developing Apps for the BlackBerry PlayBook

Lab # 3: Getting Started with Ajax and jQuery – Part 1

The objective of this lab is to review some of the concepts in communication with

external data sources in a WebWorks application for the BlackBerry PlayBook. In this

lab, we’ll be dealing with Ajax, jQuery and DOM.

Before attempting this lab, please be sure to download and install the BlackBerry WebWorks

SDK for Tablet OS available at https://bdsc.webapps.blackberry.com/html5/download/sdk.

Follow the steps under ‘How to get up and running’ to ensure you have everything you need.

After completing the steps, you should have installed the Adobe AIR SDK, the BlackBerry

WebWorks SDK for Tablet OS and VMware Player. You do not need to worry about signing

your application as we’ll be testing it on the simulator. Instructions on how to setup the simulator

in VMware Player can be found here:

http://docs.blackberry.com/en/developers/deliverables/27278/Configure_VM_BB_tablet_simulat

or_1594361_11.jsp. This lab also assumes that you have knowledge of basic JavaScript.

Exercise 1: Communicating with External Data Sources in an HTML application

 Use your completed code from Lab 2. Open index.html in your favorite text editor.

 Open script.js in your favorite text editor as well.

 We’ll be communicating directly with Google in order to obtain information about the

author which the user entered in the search box. In the previous lab, we’ve already

retrieved the name of the author, converted it into the format Google requires, and created

our request URL.

 Now is the time to actually send the request and read the response. To do that, jQuery

will be used. jQuery is a fast and concise JavaScript Library that simplifies HTML

document traversing, event handling, animating, and Ajax interactions for rapid web

development. The code required for with jQuery is much less than the code we would

require if we used pure Ajax. The most difficult parts of communication (setting the

headers, etc.) are all handled by jQuery. All that is needed to implement jQuery in any

web application is to include the current release version of the jQuery JavaScript file in

any web page that requires it. Then it’s simply jQuery function calls that are needed to

perform simple tasks that would otherwise be complex.

 More information about jQuery can be found at the jQuery homepage:

http://www.jquery.com.

 The jQuery JavaScript file is already included in the scripts folder of the lab, and is

already included in the header of the index.html file.

<script type="text/javascript" src="scripts/jquery.js"></script>

 Now we’re ready to start communicating with Google using the ‘url’ variable we created

in the previous lab.

 For communicating with Google, we’ll use the ‘get’ function from jQuery. The

appearance of this function call looks a little bit different than calling regular JavaScript

functions. Open up the scripts.js file which you were editing in the previous lab.

Underneath the line where we assigned the value of ‘url’ to ‘openpageurl’, create the

following call to the ‘get’ jQuery function.

https://bdsc.webapps.blackberry.com/html5/download/sdk
http://docs.blackberry.com/en/developers/deliverables/27278/Configure_VM_BB_tablet_simulator_1594361_11.jsp
http://docs.blackberry.com/en/developers/deliverables/27278/Configure_VM_BB_tablet_simulator_1594361_11.jsp
http://www.jquery.com/

http://cmer.uoguelph.ca

 $.get(url, function(responseText)

 {

 //The code for handling the response would be in here.

 })

 .error(function() { alert("An error has occurred"); return; })

 .complete(function() { });

 The first parameter is the URL of the information you wish to retrieve. The second

parameter is function that should be called when data is returned. In this case, we’ve

made an inner function with the parameter ‘responseText’ which is the actual HTML

response from the URL. The error and complete inner function are called if there is an

error during retrieval and when the data retrieval is complete.

 The first step we should do inside this function is check if we didn’t receive a response.

Add JavaScript code to check if the ‘responseText’ is equal to null. If it is equal to null,

the user should be alerted that there was no data returned. At this point, you should also

set the style of the loading image DIV to ‘none’ and return out of the function. Your code

should look something similar to the following:

if(responseText==null)

{

alert("There is no data.");

document.getElementById("loading").style.display="none";

return;

}

 If there are no articles or results returned from our query, Google will include the text

‘did not match any articles’ on the HTML page. You can check this for yourself by

typing in a name on the Google Scholar webpage which will return no results, such as

‘author:ASDF author:Jules’. Google Scholar is found at http://scholar.google.ca/. Try this

yourself. You’ll see that the page has the exact text that we’re going to search for next.

 Add an if-statement inside the inner function which searches the responseText for the

string ‘did not match any articles’. If this string is found, the text in the ‘result’ DIV

container should be changed to ‘<div id='noresults'>Your search did not return any

results.</div>’. Notice here that we’re adding another container inside the result DIV

container. We should also set the style of the loading image DIV to ‘none’ and return out

of the function. To set the text inside the DIV, the innerHTML attribute of the DIV

container variable in JavaScript should be used. Your function should look similar to the

following:

if(responseText.indexOf('did not match any articles')!=-1)

 {

//no results

http://cmer.uoguelph.ca

document.getElementById("results").innerHTML = "<div

id='noresults'>Your search did not return any

results.</div>";

document.getElementById("loading").style.display="none";

 return;

 }

 Now, add CSS code to adjust the position of the ‘noresults’ DIV container. It should have

the following attributes:

o Font size of 20px

o Black color

o Bold font weight

o Top padding of 90px

o Left padding of 15px

 Feel free to try what you’ve done so far in the PlayBook simulator so you can see the

results. Most browsers will block Ajax communication from local webpages, so you’ll

have to start testing from this point forward on the PlayBook simulator. To upload the file

to the simulator, please refer to the previous lab. If you encounter any issues, double

check if you initiated all the variables and make sure semi-colons are at the end of each

statement in your file.

 Now if you search with a query that has no results, the application should now let the user

know that no results are available.

 Before we go further with the communication, we’ll need to add some more global

variables for future use.

o A global variable called ‘numOfPapers’ which is set to 0 by default.

o A global variable called ‘pages’ which tells the application how many pages of

Google Scholar results it needs to fetch. Assign this to 0 by default.

o A global Array called ‘citePages’ which holds the number of citations in each

paper for a specific author. Arrays are declared in JavaScript like the following:

var citePages = new Array();

o A Boolean global variable called ‘done’ which is set to false by default. This

Boolean is used to tell the program when all articles are parsed. Afterwards, the

total number of citations can be calculated.

o A global variable called ‘publications’ which is set to 0 by default. This variable

is used to calculate the total number of publications for the searched author.

o A global variable called ‘minyear’ with a default value of 9000 and a variable

called ‘maxyear’ with a default value of -1000. These two values will be used to

determine the number of years of publications for an author.

o A global variable called ‘currentPage’ which is used to determine which page the

program is current on while parsing. This variable is also set to 0 by default.

o A global variable called ‘counter’ which is set to 0 by default. This variable is

used for a counter for the index of the ‘citePages’ Array.

 Now that we’ve finished adding our required global variables, we can continue with the

logic of our program. After the point in the jQuery get function where we checked for the

text ‘did not match any articles’, we’ll now need to find out how many results were

returned from the user’s search.

 If you search for an author in Google Scholar, you’ll notice this on the upper right hand

side of the web page:

http://cmer.uoguelph.ca

 If you look at the source code of the HTML page for that text, you’ll see the following:

<div id="gs_ab_md">About 192,000 results (0.14 sec)</div>

 This tells us how many results we have (in this case, 1810 results), and we need to extract

this value for use in the program. Add the variables pre and post which searches for the

HTML text before and after the number we want. Define these variables in the get

function as follows:

 var pre = '<div id="gs_ab_md">About';

var post = /\sresults \([0-9]+(\.?[0-9]+)? sec\)</div>/;

 Notice that we are using regular expressions for the post variable. For a tutorial on

regular expressions visit the website

http://www.vogella.de/articles/JavaRegularExpressions/article.html.

 Now that we have our text to search for, let’s find the text positions. We can find the

starting point after the ‘pre’ text by searching for the beginning position of the text, and

adding that position to the length of the ‘pre’ string. Similarly, we can find the starting

position of the post string. Using these two values, we’ll have the starting and ending

position of the number we need to extract.

 The length of the number we need to extract can be found by subtracting the two

positional values we found, and then we can use the substring method in JavaScript to get

the extract text we need. The code needed to do that can be found below:

var resultPositionPre = responseText.search(pre) + pre.length;

 var resultPositionPost = responseText.search(post);

var resultLength = resultPositionPost - resultPositionPre;

 Now that we have the length and the starting position of the number we need to extract,

we can use the JavaScript substring method to extract the number of results. The

substring method takes two arguments, the starting position of in the string that we want

to extract, and the length of what we want to extract. Since we have our starting position

in the variable ‘resultPositionPre’ and the length of the string in the ‘resultLength’

variable, we can put both these in the substring method and extract the number of results.

var tResults = responseText.substr(resultPositionPre,

resultLength);

 Afterwards, we need to remove the commas from the string, so that the string can be

treated as a number. This occurs of we have results greater than 1000. Google Scholar

will write something similar to ‘Results 1 – 100 of about 1,000’. In this case, since we

use a while loop to search for commas in ‘tResults’ and then delete them if they are

found. The reason a while loop is used is because there is the possibility of more than one

comma. After you used the substr method, add the following while loop:

http://www.vogella.de/articles/JavaRegularExpressions/article.html

http://cmer.uoguelph.ca

while(tResults.search(',') != -1)

{

tResults = tResults.substr(0, tResults.search(',')) +

tResults.substr(tResults.search(',')+1, tResults.length);

 }

 After this while loop is completed, we’ll have our number of results which can be used as

an integer in further calculations in the program.

 One small issue that we overlooked so far is what would occur if we only have one page

of results for the author we search for. On the Google Scholar page, search with the

following query: ‘author: KJ author:Rutherford’. You’ll see that there is about 70 results

(at the time this lab was written). At the end of the url, add ‘&num=100’. You’ll see now

that all of our results are in one page. Your URL should look something like:

http://scholar.google.ca/scholar?q=author%3AKJ+author%3ARutherfurd&hl=en&btnG=

Search&as_sdt=1%2C5&as_sdtp=on&num=100.

 If you look at the top-right corner of the page again, you’ll see that instead of ‘of about’,

the page now reads ‘of’ instead. We need to account for this.

 There are many ways to do this, but in lab we will simply check if what we extracted

from the page is a number. If it is not a number, it means that the ‘search’ function did

not find the string and we need to search for another key instead. To check if a value is

not a number, we can use the JavaScript function isNaN. If the result is indeed a number,

we should save the number stored in ‘tResults’ to the ‘numOfPapers’ variable, then begin

parsing the HTML page (we’ll make another function to do that). If the result is not a

number, we should search for a different key, search for that string, extract the number

between the string the pre and post strings, save this value to the ‘numOfPapers’ variable

then begin parsing the HTML page. Use the following IF statement to complete that task:

 if(isNaN(tResults) == false)

 {

 numOfPapers = tResults;

 getScholarResultsPart2(resultquery);

 }

 else

 {

 //Need to search of 'of' instead of 'of about'.

 pre = '<div id="gs_ab_md">';

 resultPositionPre = responseText.search(pre) + pre.length;

 resultLength = resultPositionPost - resultPositionPre;

tResults = responseText.substr(resultPositionPre,

resultLength);

 numOfPapers = tResults;

 getScholarResultsPart2(resultquery);

 }

 You’ll see in the code provided, we call a function ‘getScholarResultsPart2’ with the

‘resultquery’ variable as our argument. Create a JavaScript function with that name

which takes in a single argument called ‘resultquery. If you’re unsure how to do this, take

a look at the function ‘getScholarResults’ as it also takes in one arugment.

 Now it’s time to work on the ‘getScholarResultsPart2’ function. The first thing that

should be noted is that we’ll need to do slightly different things if we have more than 100

papers. If we have more than 100 papers, it also means that we have more than one page

http://scholar.google.ca/scholar?q=author%3AKJ+author%3ARutherfurd&hl=en&btnG=Search&as_sdt=1%2C5&as_sdtp=on&num=100
http://scholar.google.ca/scholar?q=author%3AKJ+author%3ARutherfurd&hl=en&btnG=Search&as_sdt=1%2C5&as_sdtp=on&num=100

http://cmer.uoguelph.ca

of results (because we told Google to give us 100 results per page). So, start by first

checking if the number of papers is greater than 100 in the ‘getScholarResultsPart2’

function. You should also include an else in the IF function you created.

 Let’s check our program so far to make sure everything is working. Add two alert

statements in the IF statement. Alert the text ‘true’ if there is greater than 100 papers in

the results and alert the text ‘false’ if there is less than 100 papers. Compile your

program, run it in the simulator and first search for ‘KJ Rutherfurd’. You should see an

alert that says ‘false.’

 Now try with ‘QH Mahmoud’. You should see an alert that says ‘true.’ If not, go through

the lab again, and verify the code that you have added.

 Remove the two alert function calls you have added in the IF statement. We’ll first start

by working on the condition that there are more than 100 papers. We need to determine

how many pages we have in the results from Google. To do that, we’ll divide the number

of papers for the author (the ‘numOfPapers’ variable) by the ‘ret_results’ variable (which

is the number of results per page). The result of this should be assigned to the ‘pages’

variable. Afterwards, we should set the ‘counter’ variable to 0 because that will be used

in our ‘citePages’ array.

 Another IF statement will then be needed to check if ‘pages’ is less than 10. If it is, we

should set the ‘currentPage’ variable to 0, and call a function which gets the results if

there are less than 10 pages. Let’s call this function ‘doCallForPagesLessThan10’. This

function should also take in the argument of ‘resultquery’ similar to the

‘getScholarResultsPart2’ function. For the else portion of the IF statement (which means

there are 10 pages), we should again set ‘currentPage’ equal to 0, and call another

function which gets the results if there are exactly 10 pages. Let’s call this function

‘doCallForPagesEqualTo10’ which again takes in the argument of ‘resultquery’.

 The ‘getScholarResultsPart2’ function should look similar to the following right now:

function getScholarResultsPart2(resultquery)

{

if(numOfPapers>100)

 {

 pages = (numOfPapers)/ret_results;

 counter = 0;

 if(pages < 10)

 {

 currentPage = 0;

 doCallForPagesLessThan10(resultquery);

 }

 else

 {

 currentPage = 0;

 doCallForPagesEqualTo10(resultquery);

 }

 }

 else

 {

 }

}

 Create the ‘doCallForPagesLessThan10’ and ‘doCallForPagesEqualTo10’ functions with

nothing inside the function bodies now.

http://cmer.uoguelph.ca

 After the IF statement where you checked if there are less than 10 pages, we’ll need to

call a function which is meant to wait until all the results are parsed before calculating the

statistics to display to the user. This function call will be a little bit different than other

calls we have made in the past. We’ll use the built-in JavaScript ‘setTimeout’ function

which is meant to do something after a certain amount of milliseconds. Call the

‘setTimeout’ function with the parameters as follows:

setTimeout("wait()", 3000);

 What this will do is call the ‘wait’ function after 3000 milliseconds, or 3 seconds. Don’t

worry about implementing the ‘wait’ function now, we’ll take care of that later. Now

your entire ‘getScholarResultsPart2’ function should look like the following:

function getScholarResultsPart2(resultquery)

{

 if(numOfPapers>100)

 {

 pages = (numOfPapers)/ret_results;

 counter = 0;

 if(pages < 10)

 {

 currentPage = 0;

 doCallForPagesLessThan10(resultquery);

 }

 else

 {

 currentPage = 0;

 doCallForPagesEqualTo10(resultquery);

 }

 setTimeout("wait()", 3000);

 }

 else

 {

 }

}

 The last function call we’ll add in this lab is in the else portion of the IF statement where

checked if we had more than 100 papers. We’ll now call a function if we have less than

100 papers. This function again will take in ‘resultquery’ as an argument. Let’s call this

function ‘doCallForLessThan100Papers.’ Add a call to this function in the else portion of

the IF statement, and create this function in JavaScript with nothing in the function body

for now. By thec` end of this lab, your entire ‘getScholarResultsPart2’ function should

look like the following:

http://cmer.uoguelph.ca

function getScholarResultsPart2(resultquery)

{

 if(numOfPapers>100)

 {

 pages = (numOfPapers)/ret_results;

 counter = 0;

 if(pages < 10)

 {

 currentPage = 0;

 doCallForPagesLessThan10(resultquery);

 }

 else

 {

 currentPage = 0;

 doCallForPagesEqualTo10(resultquery);

 }

 setTimeout("wait()", 3000);

 }

 else

 {

 doCallForLessThan100Papers(resultquery);

 }

}

function doCallForPagesLessThan10(resultquery)

{

}

function doCallForPagesEqualTo10(resultquery)

{

}

function doCallForLessThan100Papers(resultquery)

{

}

 In the next lab, we’ll continue implementing these functions and display the results to the

user. Keep all your work from this lab for the next lab.

