

1

http://cmer.uoguelph.ca

Developing Apps for the BlackBerry Smartphone
Lab #2

Getting Started with JavaScript

The objective of this lab is to review some of the concepts in HTML and CSS for creating WebWorks

application for the BlackBerry Smartphone. In this lab, we’ll be dealing with the interface of the

application. Before attempting this lab, please be sure to download and install the BlackBerry WebWorks

SDK for Smartphones available at https://bdsc.webapps.blackberry.com/html5/download/sdk. Make sure

you that you have Java Software Development Kit installed and configured on your computer. Please also

install the Ripple Emulator available at: https://bdsc.webapps.blackberry.com/html5/download/ripple. The

Ripple emulator is a mobile environment emulator that is custom-tailored for mobile HTML5 application

development and testing. You do not need to worry about signing your application as we’ll be testing it

on the emulator. Instructions on how to setup and start using the emulator can be found here:

https://bdsc.webapps.blackberry.com/html5/documentation/ww_getting_started/getting_started_with_ripp

le_1866966_11.html. This lab also assumes that you have knowledge of basic HTML and CSS.

Event handling in the HTML application

 Use your completed code from Lab 1. Open index.html in your favorite text editor.

 Open script.js in your favorite text editor as well.

 If you open the index.html file, and click on any of the buttons, you’ll realize that nothing

happens. That’s because there is no JavaScript event tied to any of the buttons yet. In this lab,

we’ll take care of that.

 Let’s start with the ‘Visit CMER website’ button. In the index.html page, find the following line:

<input type='button' value='Visit the CMER website'/>

 Next, add the attribute ‘onclick’. This attribute allows us to call a JavaScript function when the

user clicks the button. Assign the JavaScript function for that button to the function called

‘openCMERWebsite()’. The line should now look like:

<input type='button' onclick='openCMERWebsite();' value='Visit CMER'/>

 Now, you’ll create a function in the script.js file to open a new page that loads the CMER website

when the user clicks the button. Remember, the name of the function has to be

‘openCMERWebsite()’. It is best practice in JavaScript to place all global variables at the top of

the file. Create a variable called ‘cmerlink’ which is a String that has the URL of the CMER

website. The URL is ‘http://cmer.uoguelph.ca/’.

 To have the device open a URL in the browser, the following code is needed:

var args = new blackberry.invoke.BrowserArguments(cmerlink);

blackberry.invoke.invoke(blackberry.invoke.APP_BROWSER, args);

 Place this code in the ‘openCMERWebsite()’ function. Afterwards, in the index.html, add the

following line in the <head> section:

<script type="text/javascript" src="scripts/script.js"></script>

https://bdsc.webapps.blackberry.com/html5/download/sdk
https://bdsc.webapps.blackberry.com/html5/download/ripple
https://bdsc.webapps.blackberry.com/html5/documentation/ww_getting_started/getting_started_with_ripple_1866966_11.html
https://bdsc.webapps.blackberry.com/html5/documentation/ww_getting_started/getting_started_with_ripple_1866966_11.html

2

http://cmer.uoguelph.ca

 This allows the application to include the code from the JavaScript file you’re working on now.

 Now, test the application. The code you’ve placed in this function will not work in a regular web

browser; you’ll need to test it in the Ripple emulator.

 Now try clicking on the button that the event was just created for. You’ll see the following

message:

 Now you’ll need to do a similar process for the other buttons. Let’s work on the ‘About the

application’ button next. For this button, we’ll need the help of jQuery. jQuery is a fast and

concise JavaScript Library that simplifies HTML document traversing, event handling,

animating, and Ajax interactions for rapid web development. It will allow us to create fantastic UI

elements with a really small amount of code. First, include the ‘jquery.tools.min.js’ file in the

index.html file just like you did for the script.js file.

 You’ll need to run a jQuery command as soon as the page loads which assigns the jQuery

overlay command to an input field. We’ll be using the ‘rel’ attribute to specify which inputbox

invokes which overlay. Add another script tag below where you’ve imported all your other

JavaScript commands with the following code:

<script type="text/javascript">

 $(document).ready(function() {

 $("input[rel]").overlay();

 });

 </script>

 The $(document).ready command is called when the page is finished loading. The function inside

this command is called an inner function. These types of functions are useful if we only have 1 or

two JavaScript commands to invoke. Instead of making an entire function, we simply add the

code we want inside the inner function.

 Within the head section of your index.html file, you should have all of the following script tags:

3

http://cmer.uoguelph.ca

<script type="text/javascript" src="scripts/jquery.js"></script>

<script type="text/javascript" src="scripts/jquery.tools.min.js"></script>

<script type="text/javascript" src="scripts/script.js"></script>

<script type="text/javascript">

 $(document).ready(function() {

 $("input[rel]").overlay();

 });

</script>

 Now, add the code for the overlay. Another DIV container will be required for this. You can

place this new container under the ‘loading’ DIV container. Create a DIV with the id ‘mies1’ and

the class attribute set to ‘simple_overlay’. Inside the ‘mies1’ container, create another container

with the class attribute set to ‘details’. The two containers should look something close to:

 <div class="simple_overlay" id="mies1">

 <div class="details">

 </div>

</div>

 Inside the details DIV container, type some text which describes the program you’re building.

 Next, CSS will be needed to create the overlay as right now the text you typed will appear on the

page without having to press the button. Add the following code in your style.css file:

/* the overlayed element */

.simple_overlay {

 /* must be initially hidden */

 display:none;

 /* place overlay on top of other elements */

 z-index:10000;

 /* styling */

 background-color:#333;

 width:300px;

 min-height:350px;

 border:1px solid #666;

 /* CSS3 styling for latest browsers */

 -moz-box-shadow:0 0 90px 5px #000;

 -webkit-box-shadow: 0 0 90px #000;

}

/* close button positioned on upper right corner */

.simple_overlay .close {

 background-image:url(‘../images/close.png’);

 position:absolute;

4

http://cmer.uoguelph.ca

 right:-15px;

 top:-15px;

 cursor:pointer;

 height:35px;

 width:35px;

}

/* styling for elements inside overlay */

.details {

 position:absolute;

 top:15px;

 left:15px;

 font-size:14px;

 color:#fff;

 width:200px;

}

 Next, to make the button work, add the ‘rel’ attribute to the ‘About the application’ with the value

‘#mies1’. Afterwards, try opening the application in the Ripple emulator again and click on the

button. You’ll see we have a nice looking overlay appear. Feel free to resize and reposition the

overlay as you like by editing the CSS file.

<div id="aboutbutton"><input type='button' rel="#mies1" value='About the application' /></div>

 Now it is time to add an event handler to the search button in the application. For now, we’ll

simply handle the event when the user clicks the button and make something happen on the

screen.

 Start by creating a method in the JavaScript called ‘getScholarResults’ which takes in an

argument called ‘authorname’. Inside this method, check if the object authorname is equal to “”

or null. If so, you should alert the user of this and exit the method with a ‘return’ statement. Your

function definition should look like the following:

function getScholarResults(authorname)

 Now, let’s create the listener which will call this function when the search button is clicked. To

do that, add the ‘onclick’ attribute to the ‘button’ tag that is used for the search button. The value

of this attribute should be the ‘getScholarResults’ function name with the value in the search box

as the argument you are sending. Your button tag should look something similar to the following:

<button onclick="getScholarResults(document.getElementById('searchbox').value);">Search

</button>

 If you open the program in the emulator, you should see an alert box appear if you click search

without typing something.

 When the user searches, you should also show a loading icon to tell the user something is

happening. To do that, you’ll need to change the style of the DIV container where we have our

loading image. Add the following after the IF statement you created to check if the ‘authorname’

field is empty.

5

http://cmer.uoguelph.ca

document.getElementById("loading").style.display="";

 The ‘searchinfo’ field which we’ll use in the future should also be hidden. Therefore, you’ll need

to add the following JavaScript code as well which will hide the element on the HTML page.

document.getElementById("searchinfo").style.display="none";

 The text in the ‘results’ field should also be cleared with each search, so also include the

following JavaScript code as well.

document.getElementById("results").innerHTML = "";

 Run the program again, but this time, have something in the text field. You should see the loading

icon.

 In the next lab, we’ll handle communication with Google in order to get the results that we need.

Let’s start using JavaScript to format the text the user inputs in a way that Google understands.

 Below what you’ve just added let’s start manipulating the string sent with the search request to

the function. This is the author’s name that the user would like to get statistics about. The steps

required are:

o Split the ‘authorname’ variable into an array using a space (‘ ‘) as the delimiter. Call the

array ‘authorarray’.

o For each element in ‘authorarray’, append the string ‘author%3A’ to the front of it.

 Create a global variable called ‘resultquery’ and assign it initially to an empty string. After the

code to make the required changes to the array in the previous step, again assign ‘resultquery’ to

an empty string. The reason we do this again is to make sure our old query has been erased before

creating a new one.

 After resetting our ‘resultquery’ variable, we’ll need to use the ‘authorarray’ array to create our

query. For each element in the ‘authorarray’, append it to the ‘resultquery’ string with a ‘+’

before the ‘authorarry’ element you are appending. If you are appending the first element in the

‘authorarray’, you don’t need to append a ‘+’ before the element. Your for loop should look

something like the following:

 for(var i=0; i<authorarray.length; i++)

 {

 if(i==0)

 {

resultquery = resultquery + authorarray[i];

 }

 else
 {

resultquery = resultquery + "+" + authorarray[i];

 }

 }

 The next step is creating the URL for communicating with Google Scholar. Before the URL is

created, you’ll first need to create a variable which tells Google how many results we want

returned from our request. Make this a global variable at the top of the program and call the

variable ‘ret_results’. Assign this variable to 100. This variable will allow us to have at most 100

results per page. This variable is also going to used future parts of the program.

6

http://cmer.uoguelph.ca

 Also create another global variable called ‘openpageurl’ and assign it to an empty string.

 Now we’ll create our request URL. Below the for-loop you wrote to construct the result query

string, create the following ‘url’ variable.

var url =

"http://scholar.google.ca/scholar?q="+resultquery+"&num="+ret_results+"&hl=en&btnG=Search

&as_sdt=1%2C5&as_sdtp=on";

 Next, assign the ‘url’ variable to the ‘openpageurl’ variable.

 Finally, lets allow the user to simply hit enter in the application instead of clicking the search

button. To do this, we’ll need to add a listener to the button.

 In the HTML page, add an attribute to the input box. The attribute we need to add is ‘onkeyup.’

Set this variable equal to a JavaScript function called ‘handleKeyPress’ which accepts the

arguments ‘event’ and ‘this.form.’ Your HTML input box should look like the following:

<input type="text" id="searchbox" onkeypress="handleKeyPress(event, this.form)"/>

 Now create a JavaScript function called ‘handleKeyPress(e, form)’ where ‘e’ is the event, and

‘form’ is the form which triggered the call to the function. In this case, we aren’t using a form so

‘form’ would be equal to ‘null.’

 The key that was pressed can be found by using the attribute ‘keyCode’ of the event variable ‘e.’

 In the function, assign this attribute to a variable, then check whether or not the variable is equal

to 13 (the code for enter). If this variable is equal to 13, we should call the ‘getScholarResults’

with ‘document.getElementById('searchbox').value’ as the parameter of the function. The DOM

command ‘document.getElementById('searchbox').value’ will obtain the text that is currently in

the input box with the ID of ‘searchbox.’ Your ‘handleKeyPress’ function should look something

similar to the following:

function handleKeyPress(e,form)

{

 var key=e.keyCode;

 if (key==13)

 {

 getScholarResults(document.getElementById('searchbox').value);

 }

}

 Now test out what you have just done in the Ripple Emulator. How to run the simulator was

explain in Lab 1. You should notice that now you can simply press enter and the loading icon will

appear.

 You now have an application that is able to handle events, and take input from the user. The next

lab will focus on communication with Google in order to get the results. Keep all your work from

this lab for the next lab.

