
Introduction to 
Web Services

Week I



Overview

• Introduction
• Definitions
• XML
• WS Architecture
• Styles
• Profiles
• Specifications
• Similar Efforts

http://cmer.cis.uoguelph.ca 2

 Legacy Systems
 Contract Development
 Platforms
 Advantages
 Disadvantages



Introduction

• Web Services - “a software system designed to support 
interoperable Machine to Machine interaction over a 
network” – W3C

• Public methods or APIs that can be accessed over a 
private network or a public network such as the Internet. 

• Can enable applications to publish their functionality to 
select groups or even the entire world.

http://cmer.cis.uoguelph.ca 3



Definitions

• "Web Services provide a simplified mechanism to connect 
applications regardless of the technology or devices they 
use, or their location. They are based on industry 
standard protocols with universal vendor support that can 
leverage the internet for low cost communications, as well 
as other transport mechanisms. The loosely coupled 
messaging approach supports multiple connectivity and 
information sharing scenarios via services that are self 
describing and can be automatically discovered." -
http://roadmap.cbdiforum.com/reports/roi/

http://cmer.cis.uoguelph.ca 4



More Definitions

• “Web services are a new way of connecting businesses. 
Web services are platform-neutral and vendor-
independent protocols that enable any form of 
distributed processing to be performed using XML and 
Web-based technologies.” -
www.dmreview.com/rg/resources/glossary.cfm

• “Web services are self-contained business functions that 
operate over the internet.” -
http://www.studiodog.com/glossary-w.html

http://cmer.cis.uoguelph.ca 5



XML

• Web service technologies are based on XML
• XML facilitates the sharing of structured data across 

different information systems (i.e Internet)

http://cmer.cis.uoguelph.ca 6



XML Advantages

• Text-based
• Human and machine readable
• Strict syntax and parsing make it reliable International 

standards
• Validation
• Hierarchical structure is suitable for most types of data
• Platform independant

http://cmer.cis.uoguelph.ca 7



XML Disadvantages

• Redundant with large amounts of data. 
• Data redundancy storage, transmission and processing 

costs.
• Syntax is verbose
• XML namespaces are problematic and/or tricky to use. 
• The distinction between content and attributes in XML 

seems unnatural to some and makes designing XML data 
structures harder.

http://cmer.cis.uoguelph.ca 8



Architecture

http://cmer.cis.uoguelph.ca 9



Web Services Stack

http://cmer.cis.uoguelph.ca 10



Invocation

http://cmer.cis.uoguelph.ca 11



UDDI

• Universal Description, Discovery & Integration
• XML-based registry
• Stores information about businesses and Web services
• Enables people/businesses to:

– Publish their service information
– Define how their services should interact
– Discover other services

http://cmer.cis.uoguelph.ca 12



UDDI (Cont.)

• Meant to be interrogated by SOAP messages
• Provides access to WSDL documents

http://cmer.cis.uoguelph.ca 13



UDDI (Cont.)

Consists of 3 components:
• White pages

– Address, contact and known identifiers of business
• Yellow pages

– Industrial categorization based on standard 
taxonomies

• Green pages
– Technical information about the services

http://cmer.cis.uoguelph.ca 14



WSDL

• Web Service Description Language
• Pronounced “wiz-del”
• XML-based language for describing Web service 

interfaces
– Functions that service provides
– Parameters the function requires
– Results the function returns

• Specification is divided into 6 major elements…

http://cmer.cis.uoguelph.ca 15



WSDL Elements

• “definitions” element
– Root element of WSDL document
– Defines name of Web service
– Declares namespaces used in the document
– Contains all other elements

http://cmer.cis.uoguelph.ca 16



WSDL Elements (Cont.)

• “types” element
– Describes all data types to be used between the client 

and server
• Does not include XML Schema built-in simple types 

(i.e string, integers)
– If WSDL type is not specified then defaults to XML 

Schema type

http://cmer.cis.uoguelph.ca 17



WSDL Elements (Cont.)

• “message” element
– Describes a one-way message (request or response)

• Message name
• Message parameters
• Message return values

http://cmer.cis.uoguelph.ca 18



WSDL Elements (Cont.)

• “portType” element
– Combines multiple message elements to form a 

complete “round trip” operation
• i.e Can combine 1 request message and 1 

response message into a single request/response 
operation

– Can define multiple operation

http://cmer.cis.uoguelph.ca 19



WSDL Elements (Cont.)

• “binding” element
– Specifics of how service will be implemented on the 

wire

• “service” element
– Specified address for invoking service
– Most often a URL

http://cmer.cis.uoguelph.ca 20



SOAP

• XML-based messaging protocol
• Can work over HTTP

– Communicates through proxies and firewalls
• Once stood for “Simple Object Access Protocol” but 

acronym has since been dropped as it was considered to 
be misleading

http://cmer.cis.uoguelph.ca 21



SOAP Elements

• “envelope” element
– specifies that the XML document is a SOAP message; 

encloses the message itself.

• “header” element (optional)
– contains information relevant to the message, e.g., the 

date the message was sent, authentication data, etc.

http://cmer.cis.uoguelph.ca 22



SOAP Elements (Cont.)

• “body” element
– includes the message payload.

• “fault” element (optional)
– carries information about a client or server error 

within a SOAP message.

http://cmer.cis.uoguelph.ca 23



SOAP Request

POST /EndorsementSearch HTTP/1.1
Host: www.snowboard-info.com
Content-Type: text/xml; charset="utf-8"
Content-Length: 261
SOAPAction: "http://www.snowboard-info.com/EndorsementSearch"
<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
SOAP-

ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<SOAP-ENV:Body>
<m:GetEndorsingBoarder xmlns:m="http://namespaces.snowboard-
info.com">    
<manufacturer>K2</manufacturer>
<model>Fatbob</model>

</m:GetEndorsingBoarder>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>
http://cmer.cis.uoguelph.ca 24



SOAP Response

<SOAP-ENV:Envelope
xmlns:SOAP-

ENV="http://schemas.xmlsoap.org/soap/envelope/"
SOAP-

ENV:encodingStyle="http://schemas.xmlsoap.org/soap/
encoding/">

<SOAP-ENV:Body>
<m:GetEndorsingBoarderResponse
xmlns:m="http://namespaces.snowboard-info.com">
<endorsingBoarder>Chris 

Englesmann</endorsingBoarder>
</m:GetEndorsingBoarderResponse>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

http://cmer.cis.uoguelph.ca 25



Styles

1. Remote Procedure Call (RPC)
2. Service-Oriented Architecture (SOA)
3. Representational State Transfer (REST)

http://cmer.cis.uoguelph.ca 26



RPC

• Has familiar function/method call interface
• Interacts through WSDL
• First Web services focused on RPC
• Most widely used style
• Criticized for not being loosely coupled

– Requires mapping XML to other languages

http://cmer.cis.uoguelph.ca 27



SOA

• Web services built on SOA concepts
• Basic unit of communication is the message (not 

operation)
– Message oriented services

• Supported by most major software vendors
• Loose coupling is more prominent than in RPC

http://cmer.cis.uoguelph.ca 28



REST

• Emulates the HTTP protocol by restricting interface 
operations
– GET, PUT, DELETE

• Interaction with stateful resources rather than messages 
or operations

• WSDL 2.0 supports binding for all HTTP require methods

http://cmer.cis.uoguelph.ca 29



Profiles

• A set of specifications with versions:
– i.e SOAP 1.1, WSDL 1.1 UDDI 2.0, XML Schema 1.0 

(Basic profile)
• Published by the WS-I
• Improves the interoperability of Web services

http://cmer.cis.uoguelph.ca 30



Specifications

• Extend Web service capabilities
• Generally referred to as WS-*

– WS-Security
– WS-Reliability
– WS-ReliableMessaging
– WS-Addressing
– WS-Transaction
– Etc.(Many more)

http://cmer.cis.uoguelph.ca 31



Previous Efforts

1. RMI
2. CORBA
3. DCOM

http://cmer.cis.uoguelph.ca 32



RPC

• Remote Procedure Call
• Sun Microsystems developed the Open Network 

Computing RPC (1987) – communication mechanism for 
NFS

• A remote function could be invoked as if it were a local 
one

• Open Software Foundation’ DCE (Distributed Computing 
Environment) 1989

• Microsoft RPC initiative based on DCE/RPC (1990)

http://cmer.cis.uoguelph.ca 33



Java RMI

• Remote Method Invocation
• A mechanism that is part of the Java programming 

language 
• Allows Java objects to invoke methods on objects from 

another JVM 
• Object equivalent of RPC
• Core package of Java 1.1+

http://cmer.cis.uoguelph.ca 34



CORBA

• Common Object Request Broker Architecture 
• A standard defined by the Object Management Group 

(OMG, 1991)
• Enables software components written in multiple 

computer languages and/or running on multiple 
computers to work together

http://cmer.cis.uoguelph.ca 35



DCOM

• Distributed Component Object Model
• Proprietary Microsoft technology
• Extends Microsoft's COM
• Deprecated in favor of Microsoft .NET

http://cmer.cis.uoguelph.ca 36



Legacy Systems

• Web services can port legacy systems to communicate 
with the rest of the business

• Could be expensive but so is building a new system
• It’s a workaround, but it works.

http://cmer.cis.uoguelph.ca 37



Contract First vs. Contract Last

• Relates to how and when the WSDL file is generated
• The client relies on the WSDL to understand the Web 

service interface
• The client is dependant on the Web service not to 

change

http://cmer.cis.uoguelph.ca 38



Contract First

• The advised approach
• Generate the WSDL file before you create the Web 

service
• Most likely you will already know the method definitions 

before implementing the services
• Prevents the WSDL from changing if the Web service 

changes

http://cmer.cis.uoguelph.ca 39



Contract Last

• Not advised
• But most convenient
• Create the Web services first
• Use a utility that automatically generates the WSDL for 

you
• If you make changes to the service then it may change 

the WSDL
– Unexpected change negatively affect the client

http://cmer.cis.uoguelph.ca 40



Popular Supported Platforms

• C/C++
• .Net
• Java
• PHP
• Python
• Ruby (on Rails)

http://cmer.cis.uoguelph.ca 41



Some Related Efforts

• BPEL
• ebXML
• DPWS
• WSDM

http://cmer.cis.uoguelph.ca 42



BPEL

• Business Process Execution Language 
• OASIS Standard
• A language for specifying business-to-

business process behavior based on Web 
Services 

• Builds on Web services standards 

http://cmer.cis.uoguelph.ca 43



ebXML

• Electronic Business using eXtensible
Markup Language (e-business XML)

• Pronounced (ee-bee-ex-em-el)
• A family of XML based standards for:

– Promoting an open, XML-based infrastructure 
– Enabling the global use of electronic business 

information
– Ensuring interoperability, security, and 

consistency for all trading partners 

http://cmer.cis.uoguelph.ca 44



DPWS

• Devices Profile for Web Services
• Defines a minimal set of implementation 

constraints to enable secure Web service:
– Messaging
– Discovery
– Description
– Eventing on resource constrained devices

• A Web service comparison to Universal 
Plug and Play (UPnP) 

http://cmer.cis.uoguelph.ca 45



WSDM

• Web Services Distributed Management
• Pronounced (wisdom)
• A standard for managing and monitoring the 

status of Web services
• A Web service comparison to Simple 

Network Management Protocol (SNMP)

http://cmer.cis.uoguelph.ca 46



Advantages

• Interoperable
– Vendor, platform, and language independent XML 

technologies
– Ubiquitous HTTP for transport
– Client only needs WSDL
– Service implementation does not matter to client

http://cmer.cis.uoguelph.ca 47



Advantages (Cont.)

• Code Re-use
– "write once, use anywhere" programming 
– Reduces development time

• Cost Savings
– Reduces development time
– Reduces operating costs

http://cmer.cis.uoguelph.ca 48



Advantages (Cont.)

• Versatile
– Can be accessed by humans via web-based 

interfaces
– Can be accessed by autonomous applications or 

other We services
– Web services can be combined to create new 

services (Service Composition)
– The implementation behind the service does not 

change the service itself

http://cmer.cis.uoguelph.ca 49



Disadvantages

• Overhead 
– Transmitting large amounts of data in XML could 

be costly
– Portability vs. efficiency
– Not yet suitable for critical real-time applications

http://cmer.cis.uoguelph.ca 50



Disadvantages (Cont.)

• Quality of Service
– Reliability of connection
– Availability of service
– Performance of the service

• Reliability
– HTTP is not a reliable protocol in that it doesn't 

guarantee delivery or a response.
– Avoid changes to service interface that 

customers won’t expect 

http://cmer.cis.uoguelph.ca 51



References

• http://gdp.globus.org/gt4-
tutorial/multiplehtml/ch01s02.html

• http://en.wikipedia.org/wiki/SOAP
• http://sharat.wordpress.com/2007/04/17/what

-are-disadvantageschallenges-in-web-
services/

http://cmer.cis.uoguelph.ca 52


