
Week III

Mobile Devices in
Software

Engineering

Overview

• Testing
• Test Stub & Driver
• White Box Testing
• Black Box Testing
• Testing Levels
• Emulators & Devices
• Testing Checklists
• Software Deployment
• Software Maintenance
• Test Cases

http://cmer.cis.uoguelph.ca 2

Testing

• As discussed in the previous weeks, the challenges
that are faced with developing mobile applications
means the testing phase for software development has
a great importance which is already increased from
development of applications on desktops

• There are certain guidelines that have been developed
on how testing should be done for mobile applications,
what to look for, how much time should be spent, etc.

3http://cmer.cis.uoguelph.ca

Why is testing important?

• Software testing is an integral and important part of the
software development process, it is at this point that
hopefully all bugs within the system are discovered and
corrected

• Bugs will usually exist in any system of larger size, this is
usually due to design complexity rather then human error as
it is difficult for humans to manage complexity of larger
scales

• Bugs found in code at late stages in software development
will be expensive and time consuming to fix

4http://cmer.cis.uoguelph.ca

Why do we test?

• Some of the reasons why we wish to test mobile
applications:
– Different J2ME implementation on devices
– Different display sizes
– Proprietary API extensions
– Network Performance
– Different processing power on devices
– Discovering bugs or errors in code
– Finding missing requirements

5http://cmer.cis.uoguelph.ca

Software Testing

• Software testing goes hand in hand with Verification
and Validation, which asks two questions:

• Verification
– Have we built the system correctly?

• Validation
– Have we built the correct system?

6http://cmer.cis.uoguelph.ca

Goal of Software Testing

• The goal of software testing is to improve the quality of
the product, quality which is comprised of: [1]

• Functionality (External Quality)
– Correctness, Reliability, Usability, Integrity

• Engineering (Internal Quality)
– Efficiency, Testability, Documentation, Structure

• Adaptability (Future Quality)
– Flexibility, Reusability, Maintainability

7http://cmer.cis.uoguelph.ca

Test Stub & Test Driver

• Test Stubs and Test Drivers are commonly used during
the software testing period

• The use of stubs and drivers is necessary as testing
may want to be done on components prior to being
totally complete

• Test Stub
– A piece of code that simulates a missing component of

the system
• Test Driver

– A piece of code that passes test case data to a
component which will be tested

8http://cmer.cis.uoguelph.ca

White Box Testing

• White Box testing is a testing technique where the tester
has knowledge and access of the internal workings of the
component they are testing

• Test cases are derived from the program structure as the
testers are aware of the logic, style, and language of
implementation

• The goal of White Box testing is to cover as much or all of
the lines of code that create a component

• These types of tests, while not only discovering bugs, can
find code that is unused and can be discarded

9

White Box
input output

http://cmer.cis.uoguelph.ca

White Box Testing

• There are two ways in which White Box testing can be
done

• Control Flow testing
– This testing involves testing the way the individual

lines of code are executed in order
• Data Flow testing

– This testing involves looking at the lifecycle of a
particular piece of data during the execution of a
function in the system

10http://cmer.cis.uoguelph.ca

Black Box Testing

• The Black Box Testing technique deals with validating the
input and output of a particular component

• This technique does not have knowledge of the internal
workings of the component being tested

• Tests take into account valid input data and all invalid input
data and verify the correct responses by the system

• The majority of tests are designed to look at the functional
requirements of the system when using this method

11

Black Boxinput output

http://cmer.cis.uoguelph.ca

Gray Box Testing

• Gray Box testing is a technique that combines both
White and Black Box testing techniques

• In this technique the user is aware of some of the
internal workings of the component they are testing

• A tester will apply some tests to the internal
mechanisms of the component and will then apply the
rest of the tests using a Black Box testing technique

12http://cmer.cis.uoguelph.ca

Levels of Testing

• There are various levels of testing that a system can
undergo:
– Unit Testing
– Integration Testing
– Functional Testing
– System Integration Testing
– User Acceptance Testing
– Regression Testing
– Usability Testing
– Network Performance Testing
– Server-Side Testing

13http://cmer.cis.uoguelph.ca

Unit Testing

• Unit testing deals with the testing of each basic
component that comprises the system

• Unit testing does not require the entire system to be
complete, a single unit can be verified to be working
properly

• Testing individual parts helps eliminate doubt of the
individual units when the components are brought
together to form a complete system

• Integration testing becomes easier when unit testing is
done as there is some confidence in the units
themselves

14http://cmer.cis.uoguelph.ca

Integration Testing

• Integration testing is the testing of the individual units
when they have been combined as a group

• Integration testing wishes to test the functional,
performance, and reliability requirements of a group

• Three common strategies for Integration Testing:
– Top-Down
– Bottom-Up
– Umbrella

15http://cmer.cis.uoguelph.ca

Integration Testing Strategies

• Top-Down
– High level modules are tested first, minimizes the need for

drivers but stubs complicate testing
– Low level modules are tested late in development and poor

support for early releases
• Bottom-Up

– Low level modules are tested first, need for stubs is
minimized but drivers complicate test management

– High level functionality is tested late in development
• Umbrella

– Minimizes the need for stubs and drivers, the inputs to
functions are done in a bottom-up manner and the outputs of
functions are done in a top-down manner

– This approach could lead to much more regression testing
16http://cmer.cis.uoguelph.ca

Functional Testing

• Functional testing is done to ensure that a system
meets the requirements set out by business cases,
models, story boards, or any other design format

• A requirement is anything that a user utilizing the
system would expect to see from the system based on
the business rule

• All the components of the system are together and the
entire application is tested

• Functional tests are usually are done with Black Box
testing technique

17http://cmer.cis.uoguelph.ca

System Integration Testing

• System Integration Testing is done to ensure that any
new application that interacts with existing systems
does so in a correct manner

• System Integration Testing occurs prior to User
Acceptance Testing

• System Integration is a Black Box testing technique

18http://cmer.cis.uoguelph.ca

User Acceptance Testing

• User Acceptance Testing is a Black Box testing
technique

• Functional tests are created and executed by the users
or clients of the system

• Tests give final confidence that the business
requirements have been met by the developers of the
system

• Tests should be written by different authors then those
of the previous testing levels

• This is the final verification point prior to the
deployment of the system into a real world environment

19http://cmer.cis.uoguelph.ca

Regression Testing

• Regression testing is done when a piece of software
was working as expected and is suddenly not working
as expected

• A common practice is when bugs are found and fixed,
the tests that originally located those bugs are used as
regression tests whenever changes to the software is
done

• It is a good practice to build a library of tests that can
be used as a base set for regression testing any time
there is a significant change to the system

20http://cmer.cis.uoguelph.ca

Usability Testing

• Usability testing deals with the flow or processes a user will
take when using the application

• We wish to look at the amount of screens a user must
navigate to achieve their goal and ask questions such as, is
the user navigating through too many screens to achieve
their goal

• As the application is on a mobile device, text entry is
difficult, we want to know if we have minimized the amount
of text entry users have to do to fill our information

• If we notice we must navigate through too many screens we
should consider remodelling the way that function is done

21http://cmer.cis.uoguelph.ca

Network
Performance Testing

• Network Performance Testing deals with verifying how
the application reacts to certain conditions relating to
the network

• Tests can be done to see how the application performs
when the battery is low, the signal to the network has
degraded, or when the connection has been lost

• These types of tests are carried out in emulators and on
real devices, however testing on real devices and a
network becomes difficult if we wish to reproduce
scenarios as there can be factors outside our control

22http://cmer.cis.uoguelph.ca

Server-Side Testing

• Your application may interact with a remote server, it
will be important to test the server component as well

• There may be instances where you will not have control
of the server you are interacting with, such as a
publicly accessible stock quote server found at Yahoo
or Google

• It will be important to simulate those servers as best as
possible to test your application

23http://cmer.cis.uoguelph.ca

When to stop testing?

• Testing can potentially never end, therefore it is important
to know when to stop testing

• The amount of testing that is done on a system is the
outcome of a number of factors

• Budget, time, and quality of the product will be
considered when determining when to stop testing

• Commonly testing stop when budget, time, or test cases
have been exhausted, however testing should ideally stop
when the reliability of the product has met the
requirements

• Testing is a balance between attempting to predict the
potential bugs left in the system and the cost with
continued testing

24http://cmer.cis.uoguelph.ca

Emulators vs. Devices

• Tests can be carried out in the emulation
environments where the implementation has been
completed such as the Sun Wireless Toolkit or
Blackberry JDE

• The use of emulators should be the first step in the
testing process, ultimately you will need to use real
devices to test your applications

• When developing mobile applications never deploy an
application prior to physically testing it on a mobile
device

25http://cmer.cis.uoguelph.ca

Testing Checklist

• The following are testing checklists provided in
"Engineering Wireless Mobile Applications“

• These checklists contain certain tests that are performed
by Nokia and Motorola

• These tests will help you look at key areas in your mobile
application and hopefully help you resolve any issues

26http://cmer.cis.uoguelph.ca

Navigation Checklist

• Navigational Path Tests:
– Successful startup and exit

• Application starts up properly and the entry to the
application is consistent, the application should
exit properly as well

– Application Name
• Application should display the name in a title bar

– Keep the user informed
• If the application does not start within a few

seconds it should alert the user, larger applications
should contain a progress bar

27http://cmer.cis.uoguelph.ca

Navigation Checklist (Cont.)

• Readable Text
– All the content in the application should be readable

on both greyscale and colour devices, the text should
be spelled correctly and should contain no
grammatical errors

• Repainting Screens
– Screens should be properly painted, the application

should not repaint screens unnecessarily
• Soft Buttons

– Soft buttons should be consistent throughout the
application, layout of screens and buttons is
consistent

28http://cmer.cis.uoguelph.ca

Navigation Checklist (Cont.)

• Screen Navigation
– The most commonly used screens should be the

easiest to navigate towards and use the least amount
of button presses as possible

• Portability
– The application should have a friendly user interface

on all devices that it has been tested on

29http://cmer.cis.uoguelph.ca

Network Checklist (Cont.)

• Testing the network you can look at:
– Sending/Receiving data

• The application should send and receive data
properly if it interacts through a network

– Name Resolution
• IP addresses should be resolved correctly, data

should be sent and received properly
– Sensitive Data

• Data should be masked or encrypted when sent
over a wireless connection

30http://cmer.cis.uoguelph.ca

Network Checklist (Cont.)

• Error Handling
– Error messages should be displayed properly, when

an error box is dismissed the application should
regain control

• Interruptions
– When the device receives SMS messages or other

alerts the application should display these messages
properly and regain control when these messages are
dismissed

31http://cmer.cis.uoguelph.ca

Software Deployment

• After testing has been completed the system is ready for deployment
into a real world scenario

• Software Deployment consists of:
– Release

• When software is ready for users
– Installation

• Software is installed on the user’s machine
– Activation

• Software is activated and used
– Deactivation

• When software is removed or no longer used on the system
– Updating

• When a newer version of the software is available and updated
over the existing version

32http://cmer.cis.uoguelph.ca

Software Deployment (Cont.)

• There are several different ways that an application can be
placed on a mobile device

• Software can be downloaded from a website and then
installed via a cable connection to the mobile device

• A newer method is over the air provisioning where a user
downloads and installs the application wirelessly to their
mobile device

33http://cmer.cis.uoguelph.ca

Over the Air Provisioning

• Over the Air Provisioning is a relatively new method of
obtaining applications onto your mobile device

• This method allows a user to enter a web portal, find an
application, have that application download onto their
device and install that application, this is all done
wirelessly

• The mobile device is required to have a tool that can
discover MIDlets available for download, either through
the browser or some third party software

34http://cmer.cis.uoguelph.ca

Software Maintenance

• Once the application has been deployed there may be
input from users regarding the system you have
developed

• You should provide a point of contact for these
individuals to notify you of errors in your application that
you may have overlooked during testing

• Providing fixes to these errors and updates will ensure
customers continue to use your application

35http://cmer.cis.uoguelph.ca

Test Cases

• When testing your application it is important to
document the tests that you will carry out during this
phase

• This will help you to keep track of tests you have done,
tests which have passed or failed, and the conditions
surrounding those tests

• It also allows others to view your test cases and provide
input on test conditions you may have missed

36http://cmer.cis.uoguelph.ca

Test Cases (Cont.)

• Test Cases are written based on use cases, business
rules, sequence diagrams, story boards, etc.

• Test Cases usually contain the format of:
– Summary
– System Configuration
– Initial Condition
– Steps of Execution
– Results of Execution

• Depending on the testing level there can also be other
criteria as in the importance of the test case or the
severity of the bug found

37http://cmer.cis.uoguelph.ca

Test Case Example

Test Case Name Invalid Characters
Summary This test will verify an error message appears when a user

enters invalid characters in the login text box and clicks
submit

System Configuration All Systems should be up and running normally

Initial Condition User is at the login screen

Steps of Execution 1. Enter invalid characters such as (!,@,#,$,%,^,&,*,(,),-)
into the user name field

2. Enter invalid characters such as (!,@,#,$,%,^,&,*,(,),-)
into the password field

3. Click the submit button
4. An error message appears telling the user they have

entered invalid characters into the fields

Results of Execution Passed

38http://cmer.cis.uoguelph.ca

References

• [1]
http://www.ece.cmu.edu/~koopman/des_s99/sw_testing/

• [2] Mahmoud, Qusay H., and Zakaria Maamar.
"Engineering Wireless Mobile Applications." Int. J. of
Information Technology and Web Engineering 1.1 (2006):
58-73.

• http://msdn.microsoft.com/en-
us/library/aa292128(VS.71).aspx

• http://www.devbistro.com/articles/Testing/Requirements-
Based-Functional-Testing

• http://www.buzzle.com/editorials/4-10-2005-68349.asp
• http://msdn.microsoft.com/en-

us/library/aa292167(VS.71).aspx
39http://cmer.cis.uoguelph.ca

