
Week II

Security APIs for 
Mobile Devices



Overview

• SATSA
• Smart Card Communications
• Digital Signatures
• General Purpose Cryptographic Library
• MIDP
• Trusted/Untrusted MIDlet Suites
• Permissions
• Protection Domains
• Signing a MIDlet
• Creating the Signing Certificate
• Verifying Certificate
• Certification Expiration and Revocation

http://cmer.cis.uoguelph.ca 2



APIs

• There are various APIs available 
that deal with security, trust, and 
privacy.

• The following below deal with 
mobile devices:
– Security and Trust Services API 

(SATSA) for J2ME
– Mobile Information Device 

Profile (MIDP) for J2ME

http://cmer.cis.uoguelph.ca 3



SATSA

• Security and Trust Services API (SATSA) 
defines an API that provides various abilities 
for J2ME developed applications that may 
communication with various security related 
elements.

• It focuses on three specific areas
• Smart Card Communication
• Digital Signatures
• General Purpose Cryptography Library

http://cmer.cis.uoguelph.ca 4



Smart Card 
Communications (Cont.)

• Based on the Generic Connection Framework (GCF), 
which is defined in the CLDC 1.0 specification

• Provide a secure programming environment
• Due to a smart card’s ability to provide a wide range of 

security and trust services, they are the most 
commonly used security element.

http://cmer.cis.uoguelph.ca 5



Smart Card 
Communications (Cont.)

• It’s services can be frequently upgraded with new or 
better applications that can be installed on a smart 
card

• Two access methods are defined that allow a J2ME 
application to communicate with a smart card to 
control the security services deployed on it
– ADPU protocol
– Java Card RMI protocol

http://cmer.cis.uoguelph.ca 6



Digital Signatures

• Allows a J2ME application to generate digital 
signatures

• Used to authenticate end-users or to authorize 
transactions using public key cryptography. 

• User’s identity is usually bound to the public key 
through a public key certificate. 

http://cmer.cis.uoguelph.ca 7



Digital Signatures (Cont.)

• User credential management allows a J2ME application 
to manage user credentials on a user’s behalf.
– i.e. certificates

• Digital signature service and credential management rely 
on a security element to provide secure storage of user 
credentials and cryptographic keys

http://cmer.cis.uoguelph.ca 8



Digital Signatures (Cont.)

• The security element is also responsible for 
implementing secure computation involving the 
cryptographic keys that are securely stored on the 
security element.

http://cmer.cis.uoguelph.ca 9



General Purpose Cryptography 
Library

• This library provides a similar version of the J2security 
element cryptography API.

• It supports basic cryptographic operations, such as 
message digest, digital signature verification (but not 
signing), encryption, and decryption. 

http://cmer.cis.uoguelph.ca 10



General Purpose Cryptography 
Library (Cont.)

• Cryptographic operations allow a J2ME application to 
provide secure data communication, data protection, and 
content management.

• The subset is determined by including the minimum 
number of classes and methods from the J2security 
element API to address the use cases that are not 
targeted by other API in this specification. 

http://cmer.cis.uoguelph.ca 11



General Purpose Cryptography 
Library (Cont.)

• Another criterion to select the subset is to expose the 
cryptographic functions that are already supported by 
many devices. To minimize the footprint, the API in the 
subset supports only a default Cryptographic Service 
Provider.

http://cmer.cis.uoguelph.ca 12



API Packages

• There are four packages that are a subset of this API
– SATSA-APDU

• defines an API to support communication with 
smart card applications using the APDU protocol.

– SATSA-JCRMI
• defines a Java Card RMI client API that allows a 

J2ME application to invoke a method of a remote 
Java Card object.

http://cmer.cis.uoguelph.ca 13



API Packages (Cont.)

– SATSA-PKI 
• defines an API to support application level digital 

signature signing (but not verification) and basic 
user credential management. To enable broader 
reuse, this API is independent of the type of 
security elements that are utilized by a J2ME 
device.

– SATSA-CRYPTO 
• defines a subset of the J2security element 

cryptography API. It provides basic cryptographic 
operations to support message digest, signature 
verification, encryption, and decryption.

http://cmer.cis.uoguelph.ca 14



API Packages (Cont.)

– SATSA-APDU and SATSA-JCRMI packages can be 
implemented on a J2ME device which does not have 
the smart card slots. 

• Such implementation of these optional packages 
is called the null implementation

http://cmer.cis.uoguelph.ca 15



SATSA-APDU

• Includes two components to support communication 
with smart cards using the APDU protocol
– A subset of the java.lang package that supports the 

exception class UnsupportedOperationException
– The javax.microedition.apdu package

• Contains the interface APDUConnection to support 
APDU exchanges.

http://cmer.cis.uoguelph.ca 16



SATSA-APDU (Cont.)

• Allows a J2ME application to create a APDUConnection
that can communicate with a smart card application 
identified by an Application Identifier.

• Each APDUConnection has a logical channel reserved 
exclusively for it.
– Logical channel management is handled by the API 

implementation, which requests the smart card to 
allocate an unused logical channel.

http://cmer.cis.uoguelph.ca 17



SATSA-APDU (Cont.)

• More than one APDUConnection can be created to 
communicate simultaneously with smart card 
applications on one (via logical channels) or multiple 
smart cards.

• An implementation may support up to 20 logical 
channels for communication with the smart card.

http://cmer.cis.uoguelph.ca 18



SATSA-APDU (Cont.)

• An APDUConnection can be created to communicate 
with SIM application toolkit applications on channel 0 of 
an IC card or a SIM card. 

• The APDUConnection has limited capabilities when 
communicating with a SIM application toolkit 
application.

http://cmer.cis.uoguelph.ca 19



SATSA-APDU (Cont.)

• Only ENVELOPE APDUs may be sent by J2ME 
applications to trigger a SIM application toolkit 
application.

• Proactive sessions and commands are not supported by 
the APDUConnection. 

http://cmer.cis.uoguelph.ca 20



SATSA-APDU (Cont.)

• J2ME application is responsibility for making sure that 
it must not send an envelope to the SIM application 
toolkit application that would result in a proactive 
session being initiated via the APDUConnection
interface.

http://cmer.cis.uoguelph.ca 21



SATSA-JCRMI

• Contains four components
– A subset of the java.lang package that supports the 

exception class UnsupportedOperationException
– A subset of the java.rmi package that provides the 

basic RMI client interfaces.
– The javax.microedition.jcrmi package

• Contains the JavaCardRMIConnection interface 
used to initiate a JCRMI session and interfaces 
used by the stubs generated by the JCRMI stub 
compiler

http://cmer.cis.uoguelph.ca 22



SATSA-JCRMI (Cont.)

– A subset of the Java Card API. The subset includes 
the Exception classes defined in the packages 
javacard.framework, javacard.framework.service, and 
javacard.security

• These exceptions may be thrown during a method 
invocation of a Java Card object because of 
cryptographic errors (the javacard.security
package), card framework access errors (the 
javacard.framework package) or errors detected in 
accessing the card services (the 
javacard.framework.service package)

http://cmer.cis.uoguelph.ca 23



SATSA-JCRMI (Cont.)

• This package is used to create a 
JavaCardRMIConnection to initialize and initiate a Java 
Card RMI session with a Java Card applet.

• A JavaCardRMIConnection allows a J2ME application to 
access the initial remote reference. 
– This then allows the application to invoke methods of 

the remote object on the card and obtain the 
references to other remote objects.

http://cmer.cis.uoguelph.ca 24



SATSA-JCRMI (Cont.)

• Each JavaCardRMIConnection has a logical channel 
reserved exclusively for it.
– Logical channel management is handled by the API 

implementation, which requests the smart card to 
allocate an unused logical channel.

• More than one JavaCardRMIConnection can be created 
to communicate simultaneously with Java Card applets 
on one or multiple smart cards.

http://cmer.cis.uoguelph.ca 25



SATSA-JCRMI (Cont.)

• An implementation may support up to 20 logical 
channels for communication with the smart card.

• Platforms that do not support the standard J2security 
element RMI, must have a static stub for each remote 
object generated off the device and downloaded together 
with a J2ME application.

http://cmer.cis.uoguelph.ca 26



SATSA-JCRMI (Cont.)

• The stub interfaces that a JCRMI compiler must use to 
create the appropriate stubs are defined in this optional 
package

http://cmer.cis.uoguelph.ca 27



SATSA-PKI

• Contains two components
– The javax.microedition.pki package

• supports generation of certificate requests and 
local registration of the user credentials. 

• user credentials are used in conjunction with 
other parameters to compute formatted digital 
signatures

– The javax.microedition.securityservice package. 
• It supports generation of application-level digital 

signatures that conform to Cryptographic 
Message Syntax format

http://cmer.cis.uoguelph.ca 28



SATSA-PKI (Cont.)

• This package is provided to generate digital signatures 
and basic user credential management
– Eg, an X.509 certificate is a user credential that 

includes a public key
• Allows the use of CMSMessageSignatureService to sign 

messages with a private key.
• Messages may be signed for authentication or non-

repudiation. 

http://cmer.cis.uoguelph.ca 29



SATSA-PKI (Cont.)

• Authorization of the use of a key in a security element is 
governed by the policy of the security element, for 
example, PIN entry required.

• A J2ME application uses UserCredentialManager to 
perform the following tasks:
– Formulate a certificate enrollment request, which may 

be sent to a certificate registration authority.

http://cmer.cis.uoguelph.ca 30



SATSA-PKI (Cont.)

– Add a certificate or a certificate URI to a certificate 
store.

– Remove a certificate or a certificate URI from a 
certificate store.

http://cmer.cis.uoguelph.ca 31



SATSA-CRYPTO

• Contains three components
– The java.security and java.security.spec packages. 

• provide the basic support for accessing public 
keys, computing digests, and verifying digital 
signatures

– The javax.crypto and javax.crypto.spec packages. 
• provide the basic support for encryption and 

decryption of data

http://cmer.cis.uoguelph.ca 32



SATSA-CRYPTO (Cont.)

– A subset of the java.lang package
• Contains the exception class 

IllegalStateException
• A subset of the J2SE cryptography API
• Allows the use of the MessageDigest class to access 

the functionality of a message digest algorithm.
• Allows use the Signature class to access the 

functionality of a digital signature algorithm for 
verifying a digital signature.

http://cmer.cis.uoguelph.ca 33



SATSA-CRYPTO (Cont.)

• A J2ME application uses the Cipher class to access 
the functionality of a cryptographic cipher for 
encryption and decryption. 

• The SATSA-CRYPTO package does not include an API 
to create a private key object. 
– Asymmetric cipher using a private key is not 

supported.

http://cmer.cis.uoguelph.ca 34



SATSA-CRYPTO (Cont.)

• The KeyFactory class can be used to build an opaque 
public key object from a given key specification 
(transparent representations of the underlying key 
material).

http://cmer.cis.uoguelph.ca 35



SATSA-CRYPTO (Cont.)

• A J2ME application uses the SecretKeySpec class to 
construct an opaque secret key object from the key 
material that can be represented as a byte array and 
have no key parameters associated with them.

http://cmer.cis.uoguelph.ca 36



Security

• A J2ME application must be granted with a 
permission to use the privileged API in SATSA-APDU, 
SATSA-JCRMI, and SATSA-PKI packages. 

• Permissions are checked by the platform prior to the 
invocation of the protected methods in the API. 

http://cmer.cis.uoguelph.ca 37



Security (Cont.)

• Based on the security framework implemented by 
the underlying platform, an implementation of a 
SATSA package must support either the MIDP 2.0 
permissions applicable to that package or the 
functional equivalent J2security element style 
permission classes.

http://cmer.cis.uoguelph.ca 38



Security (Cont.)

• Along with protecting the usage of the resources in a 
security element, a recommended access control 
model is defined that allows the security element to 
specify access control policies. 

http://cmer.cis.uoguelph.ca 39



Security (Cont.)

• Within the scope of this specification, the access 
control model is intended for the API in the SATSA-
APDU and SATSA-JCRMI packages, when it is 
implemented on GSM/UMTS-complaint devices. 

http://cmer.cis.uoguelph.ca 40



Security (Cont.)

• Based on the access control policy defined in a smart 
card, the device determines whether the J2ME 
application is allowed to access any function of the 
smart card, using theAPDUConnection or the 
JavaCardRMIConnection.

http://cmer.cis.uoguelph.ca 41



MIDP

• MIDP v2.0 stands for Mobile Information Device Profile 
for Java ME.

• This specification was created to define an enhanced 
architecture and the associated APIs required to enable 
an open, third-party, application development 
environment for mobile information devices, or MIDs

http://cmer.cis.uoguelph.ca 42



MIDP (Cont.)

• Designed to operate on top of the Connected, Limited 
Device Configuration (CLDC)

• Deals with the following APIs
– Application delivery and billing
– Application lifecycle (i.e., defining the semantics of a 

MIDP application and how it is controlled)
– Application signing model and privileged domains 

security model

http://cmer.cis.uoguelph.ca 43



MIDP (Cont.)

– End-to-end transactional security (https)
– MIDlet push registration (server push model)
– Networking
– Persistent storage
– Sound
– Timers
– User interface (UI) (including display and input, as 

well as the unique requirements for games).

http://cmer.cis.uoguelph.ca 44



Responsibility

• MIDP is not responsible for
– System-level APIs: 

• MIDP is intented for enabling application 
programmers, rather than enabling system 
programming. 

• low-level APIs that specify a system interface to, for 
example, a MID's power management or voice 
CODECs are beyond the scope of this specification.

– Low-level security: 
• The MIDP specifies no additional low-level security 

features other than those provided by the CLDC.

http://cmer.cis.uoguelph.ca 45



Requirements

• In order to use MIDP the following criteria must be met.
– MUST support MIDP 1.0 and MIDP 2.0 MIDlets and 

MIDlet Suites.
– MUST include all packages, classes, and interfaces 

described in this specification.
– MUST implement the OTA User Initiated 

Provisioning specification.

http://cmer.cis.uoguelph.ca 46



Requirements (Cont.)

– MUST give the user a visual indication of network 
usage generated when using the mechanisms 
indicated in this specification.

– MUST provide support for accessing HTTP 1.1 
servers and services either directly, or by using 
gateway services such as provided by WAP or i-
mode.

– MUST provide support for secure HTTP 
connections either directly, or by using gateway 
services such as provided by WAP or i-mode.

http://cmer.cis.uoguelph.ca 47



Requirements (Cont.)

– MUST support PNG image transparency.
– MUST support ISO/IEC JPEG together with JFIF.
– MUST support Tone Generation in the media 

package.
– MUST support 8-bit, 8 KHz, mono linear PCM wav 

format IF any sampled sound support is provided.

http://cmer.cis.uoguelph.ca 48



Requirements (Cont.)

– MUST support Scalable Polyphony MIDI (SP-MIDI) 
and SP-MIDI Device 5-to-24 Note Profile IF any 
synthetic sound support is provided.

– MUST implement the mechanisms needed to 
support "Untrusted MIDlet Suites".

– MUST implement "Trusted MIDlet Suite Security" 
unless the device security policy does not permit or 
support trusted applications.

http://cmer.cis.uoguelph.ca 49



Requirements (Cont.)

– MUST support Scalable Polyphony MIDI (SP-MIDI) 
and SP-MIDI Device 5-to-24 Note Profile IF any 
synthetic sound support is provided.

– MUST implement the mechanisms needed to 
support "Untrusted MIDlet Suites".

– MUST implement "Trusted MIDlet Suite Security" 
unless the device security policy does not permit 
or support trusted applications.

http://cmer.cis.uoguelph.ca 50



Requirements (Cont.)

– MUST implement "Trusted MIDlet Suites Using X.509 
PKI" to recognize signed MIDlet suites as trusted 
unless PKI is not used by the device for signing 
applications.

– MUST implement "MIDP x.509 Certificate Profile" for 
certificate handling of HTTPS and 
SecureConnections.

http://cmer.cis.uoguelph.ca 51



Requirements (Cont.)

– MUST enforce the same security requirements for I/O 
access from the Media API as from the Generic 
Connection framework, as specified in the package 
documentation for javax.microedition.io.

– MUST support at least the UTF-8 character encoding 
for APIs that allow the application to define character 
encodings.

– SHOULD NOT allow copies to be made of any MIDlet
suite unless the device implements a copy 
protection mechanism.

http://cmer.cis.uoguelph.ca 52



Requirements (Cont.)

– SHOULD provide support for datagram connections.
– SHOULD provide support for server socket stream 

connections.
– SHOULD provide support for socket stream 

connections.
– SHOULD provide support for secure socket stream 

connections.

http://cmer.cis.uoguelph.ca 53



Requirements (Cont.)

– MAY support other character encodings.
– MAY incorporate zero or more supported protocols 

for push.
– MAY provide support for accessing any available 

serial ports on their devices through the 
CommConnection interface.

– MAY include support for additional sampled sound 
formats.

– MAY include support for additional MIDI formats.
– MAY include support for additional image formats.

http://cmer.cis.uoguelph.ca 54



Security - MIDP

• MIDP 1.0
– constrains each MIDlet suite to operate in a 

sandbox wherein all of the APIs available to the 
MIDlets would prevent access to sensitive APIs or 
functions of the device. 

– This concept is used in this specification and all 
untrusted MIDlet suites are subject to its 
limitations. Every implementation of this 
specification MUST support running untrusted
MIDlet suites.

http://cmer.cis.uoguelph.ca 55



Security – MIDP (Cont.)

• MIDP 2.0
– launched the concept of trusted applications that 

may be permitted to use APIs that are considered 
sensitive and are restricted. 

– If and when a device determines that a MIDlet
suite can be trusted then access is allowed as 
indicated by the domain policy. 

– devices are expected to operate using standard 
Internet and wireless protocols and techniques 
for transport and security. 

http://cmer.cis.uoguelph.ca 56



Security – MIDP (Cont.)

– The current mechanisms for securing Internet 
content is based on existing Internet standards for 
public key cryptography:

• [RFC2437] - PKCS #1 RSA Encryption Version 2.0
• [RFC2459] - Internet X.509 Public Key 

Infrastructure
• [RFC2560] - Online Certificate Status Protocol
• [WAPCERT] - WAP-211-WAPCert-20010522-a -

WAP Certificate Profile Specification

http://cmer.cis.uoguelph.ca 57



Trusted or Untrusted
MIDlet suite?

• Any MIDlet suite that is not trusted by the device 
MUST be run as untrusted. 

• If errors occur in the process of verifying that a 
MIDlet suite is trusted then the MIDlet suite MUST be 
rejected.

http://cmer.cis.uoguelph.ca 58



Untrusted MIDlet Suites

• An untrusted MIDlet suite is a MIDlet suite for which 
the origin and the integrity of the JAR file can NOT 
be trusted by the device. 

• Untrusted MIDlet suites MUST execute in the 
untrusted domain using a restricted environment 
where access to protected APIs or functions either 
is not allowed or is allowed with explicit user 
permission. 

http://cmer.cis.uoguelph.ca 59



Untrusted MIDlet Suites (Cont.)

• Any MIDP 1.0 compliant MIDlet suite MUST be able to 
run in an implementation of this specification as 
untrusted.

• Any APIs or functions of this specification which are 
not security sensitive, having no permissions defined 
for them, are implicitly accessible by both trusted and 
untrusted MIDlet suites.

http://cmer.cis.uoguelph.ca 60



Untrusted MIDlet Suites (Cont.)

• Untrusted MIDlet suites do not request permissions 
explicitly in the JAR manifest or application 
descriptor.

• Allow access to the following APIs WITHOUT 
explicit confirmation from the user
– RMS APIs 

• javax.microedition.rms
– MIDlet Lifecycle APIs

• javax.microedition.midlet

http://cmer.cis.uoguelph.ca 61



Untrusted MIDlet Suites (Cont.)

– User Interface APIs
• javax.microedition.lcdui

– The Game APIs
• javax.microedition.lcdui.game

– The multi-media APIs for playback of sound
• javax.microedition.media
• javax.microedition.media.control

http://cmer.cis.uoguelph.ca 62



Untrusted MIDlet
Suites (Cont.)

• Allow access to the following protected APIs or 
functions WITH explicit confirmation from the user
– http

• javax.microedition.io.HttpConnection
– https

• javax.microedition.io.HttpsConnection

http://cmer.cis.uoguelph.ca 63



Trusted MIDlet Suite 
Security

• A MIDlet suite for which the authentication and the 
integrity of JAR file can be trusted by the device and 
bound to a protection domain

• Based on protection domains. 
– Protected domain is a set of Allowed and User 

permissions that may be granted to a MIDlet suite

http://cmer.cis.uoguelph.ca 64



Trusted MIDlet Suite 
Security (Cont.)

• Each protection domain defines the permissions that 
may be granted to a MIDlet suite in that domain. 

• The protection domain owner specifies how the device 
identifies and verifies that it can trust a MIDlet suite 
and bind it to a protection domain with the 
permissions that authorize access to protected APIs or 
functions. 

http://cmer.cis.uoguelph.ca 65



Trusted MIDlet Suite 
Security (Cont.)

• Using X.509 PKI, the trusted MIDlet Suites describes 
a mechanism for identifying trusted MIDlet suites 
though signing and verification. 

• If an implementation of this specification will 
recognize MIDlet suites signed using PKI as trusted 
MIDlet suites they must be signed and verified 
according to the formats and processes specified in 
Trusted MIDlet Using X.509 PKI.

http://cmer.cis.uoguelph.ca 66



Permissions

• Permissions are the means to protect access to APIs 
or functions which require explicit authorization 
before being invoked. 

• Permissions are checked by the implementation prior 
to the invocation of the protected function.

• The names of permissions have a hierarchical 
organization similar to Java package names. 

http://cmer.cis.uoguelph.ca 67



Permissions (Cont.)

• The names of permissions are case sensitive. 
• All of the permissions for an API MUST use the prefix 

that is the same as the package name of the API. 
• If the permission is for a function of a specific class in 

the package then the permission MUST include the 
package and classname. 

http://cmer.cis.uoguelph.ca 68



Permissions (Cont.)

• Each API in this specification that provides access to a 
protected function will define the permissions. 

• For APIs defined outside of MIDP 2.0 there must be a 
single document that specifies any necessary 
permissions and the behavior of the API when it is 
implemented on MIDP 2.0.

http://cmer.cis.uoguelph.ca 69



Permissions for 
Protected Functions

• Each function (or entire API) which was identified as 
protected must have its permission name defined in 
the class or package documentation for the API.

• Refer to the documentation of the 
javax.microedition.io package for permissions on all 
Generic Connection schemes defined in this 
specification. 

http://cmer.cis.uoguelph.ca 70



Permissions for 
Protected Functions (Cont.)

• All APIs and functions within this specification that do 
not explicitly define permissions MUST be made 
available to all trusted and untrusted MIDlet suites.

http://cmer.cis.uoguelph.ca 71



Requesting Permissions 
for a MIDlet Suite

• A MIDlet suite that requires access to protected APIs 
or functions must request the corresponding 
permissions.

• Permissions requested can be required by listing the 
permissions in the attribute MIDlet-Permissions.

• These permissions are critical to the function of the 
MIDlet suite and it will not operate correctly without 
them.

http://cmer.cis.uoguelph.ca 72



Requesting Permissions 
for a MIDlet Suite (Cont.)

• If the MIDlet suite can function correctly with or without 
particular permission(s) it should request them using 
the MIDlet-Permissions-Opt attribute. 

• The MIDlet suite is able to run with reduced 
functionality (for example, as a single player game 
instead of a net game) without these non-critical 
permissions and MUST be installed and run.

http://cmer.cis.uoguelph.ca 73



Requesting Permissions 
for a MIDlet Suite (Cont.)

• The MIDlet-Permissions and MIDlet-Permissions-
Opt attributes contain a list of one or more 
permissions. 

• Multiple permissions are separated by a comma.
• Leading/trailing whitespace and tabs are ignored.

http://cmer.cis.uoguelph.ca 74



Permissions on the Device

• Each device that implements this specification and 
any other Java APIs will have a total set of 
permissions referring to protected APIs and 
functions.

http://cmer.cis.uoguelph.ca 75



Protection Domains

• A protection domain defines a set of permissions and 
related interaction modes. 

• A protection domain consists of:
– a set of permissions that should be allowed 

(Allowed)
– a set of permissions that the user may authorize 

(User) each with its user interaction mode

http://cmer.cis.uoguelph.ca 76



Protection Domains (Cont.)

• Within a protection domain each permission may be 
either allowed or user but NOT both.

http://cmer.cis.uoguelph.ca 77



Allowed Permission

• The Allowed permissions are any permissions which 
explicitly allow access to a given protected API or 
function on the basis of MIDlet suite being associated 
with the protection domain. 

• Allowed permissions do not require any user 
interaction.

http://cmer.cis.uoguelph.ca 78



User Permission

• The User permissions are any permissions for a 
protected API or function on the basis of MIDlet suite 
being bound to the protection domain and will allow 
access to protected API or function after the prompt 
given to the user and explicit user permission being 
granted.

http://cmer.cis.uoguelph.ca 79



User Permission 
Interaction Modes

• A User Permission is defined to allow the user to deny 
permission or to grant permission to a specific API 
with one of the following interaction modes:
– blanket 

• valid for every invocation of an API by a MIDlet
suite until it is uninstalled or the permission is 
changed by the user.

http://cmer.cis.uoguelph.ca 80



User Permission 
Interaction Modes (Cont.)

– Session
• valid from the invocation of a MIDlet suite until 

it terminates. "session" mode MUST prompt the 
user on or before the first invocation of the API 
or function which is protected. When the user 
re-invokes the MIDlet suite the prompt MUST be 
repeated.

– Oneshot
• MUST prompt the user on each invocation of 

the API or function which is protected.

http://cmer.cis.uoguelph.ca 81



User Permission 
Interaction Modes (Cont.)

• The choice of user permission interaction modes is 
driven by the security policy and the device 
implementation. 

• Each user permission has a default interaction mode and 
a set of other available interaction modes. 

• The user SHOULD be presented with a choice of 
interaction modes. 

http://cmer.cis.uoguelph.ca 82



User Permission 
Interaction Modes (Cont.)

• The default interaction mode may be offered if it is 
supplied. 

• The user MUST always be able to deny permission.
• If and when prompted, the user SHOULD be provided 

with a user friendly description of the requested 
permissions sufficient to make a well-informed choice.

http://cmer.cis.uoguelph.ca 83



User Permission 
Interaction Modes (Cont.)

• The range of blanket to one shot action permission 
modes represents a tradeoff between usability and 
user notification and should behave smoothly and 
consistently with the human interface of the device.

http://cmer.cis.uoguelph.ca 84



Granting Permissions to 
Trusted MIDlet Suites

• Authorization of trusted MIDlet suites uses 
protection domain information, permissions on the 
device, and permissions requested in the MIDlet
suite. 

• Permissions in the domain are Allowed or User. 
• Permissions requested by the application are either 

critical or non-critical.

http://cmer.cis.uoguelph.ca 85



Granting Permissions to 
Trusted MIDlet Suites (Cont.)

• To establish the permissions granted to a trusted 
MIDlet suite when it is to be invoked, all of the 
following MUST be true:
– The MIDlet suite must have been bound to a 

protection domain.
– The requested critical permissions are retrieved 

from the attributes MIDlet-Permissions and non-
critical permissions from MIDlet-Permissions-Opt. 

http://cmer.cis.uoguelph.ca 86



Granting Permissions to 
Trusted MIDlet Suites (Cont.)

– If these attributes appear in the application 
descriptor they MUST be identical to corresponding 
attributes in the manifest. If they are not identical, 
the MIDlet suite MUST NOT be installed or invoked.

– If any of the requested permissions are unknown to 
the device and are not marked as critical then they 
are removed from the requested permissions.

http://cmer.cis.uoguelph.ca 87



Granting Permissions to 
Trusted MIDlet Suites (Cont.)

– If any of the requested permissions are unknown to 
the device and marked as critical, the MIDlet suite 
MUST NOT be installed or invoked.

– If any of the requested permissions are not present 
in the protection domain (Allowed or User) 
permission sets and the requested permission was 
marked as critical then the MIDlet suite does not 
have sufficient authorization and MUST NOT be 
installed or invoked.

http://cmer.cis.uoguelph.ca 88



Granting Permissions to 
Trusted MIDlet Suites (Cont.)

– If any of the requested permissions are not 
present in the protection domain (Allowed or 
User) permission sets, and the requested 
permissions are not marked as critical, the 
application MUST still be installed and MUST be 
able to be invoked by the user.

– If any of the requested permissions match the 
User permissions of the protection domain then 
the user MUST explicitly provide authorization to 
grant those permissions to the MIDlet suite. 

http://cmer.cis.uoguelph.ca 89



Granting Permissions to 
Trusted MIDlet Suites (Cont.)

• The implementation is responsible for making 
the request to the user and getting the response 
to allow or deny the request.

– During execution, any protected APIs MUST check 
for the appropriate permissions and throw a 
SecurityException if the permission has not been 
granted.

• The successful result of authorization is that the 
MIDlet suite is granted access to protected APIs or 
functions for which it requested permissions.

http://cmer.cis.uoguelph.ca 90



Trusted MIDlet Suites 
using X.509 PKI

• Signed MIDlet suites may become trusted by 
authenticating the signer of the MIDlet suite and 
binding it to a protection domain that will authorize the 
MIDlet suite to perform protected functions by granting 
permissions allowed in the protection domain. 

http://cmer.cis.uoguelph.ca 91



Trusted MIDlet Suites 
using X.509 PKI (Cont.)

• This allows signing and authentication of MIDlet
suites based on X.509 Public Key Infrastructure so the 
device can verify the signer and trust the MIDlet suite.

• If an implementation of this specification will 
recognize MIDlet suites signed using PKI as trusted 
MIDlet suites they MUST be signed and verified 
according to the formats and processes below.

http://cmer.cis.uoguelph.ca 92



Trusted MIDlet Suites 
using X.509 PKI (Cont.)

• The MIDlet suite is protected by signing the JAR. 
– The signature and certificates are added to the 

application descriptor as attributes. 
– The device uses them to verify the signature. 
– The device completes the authentication using a 

root certificate bound to a protection domain on 
the device. 

http://cmer.cis.uoguelph.ca 93



Signing a MIDlet Suite

• Zero or more root certificates will need to be on the 
device. Additionally, root certificates may be present in 
removable media such as SIM(WIM) card/USIM module. 

• Implementations MUST support X.509 Certificates and 
corresponding algorithms. 

• Devices MAY support additional signing mechanisms 
and certificate formats.

http://cmer.cis.uoguelph.ca 94



Signing a MIDlet Suite (Cont.)

• The signer of the MIDlet suite may be the developer 
or some entity that is responsible for distributing, 
supporting, and perhaps billing for its use. 

• The signer will need to have a public key certificate 
that can be validated to one of the protection domain 
root certificates on the device. 

• The public key is used to verify the signature on the 
MIDlet suite. 

http://cmer.cis.uoguelph.ca 95



Signing a MIDlet Suite (Cont.)

• The public key is provided as a RSA X.509 certificate 
included in the application descriptor.

• Attributes defined within the manifest of the JAR are 
protected by the signature. 

• Attributes defined within the application descriptor 
are not secured. 
– When an attribute appears in the manifest it MUST 

NOT be overridden by a different value from the 
application descriptor. 

http://cmer.cis.uoguelph.ca 96



Signing a MIDlet Suite (Cont.)

• For trusted MIDlet suites the value in the application 
descriptor must be equal to the value of the 
corresponding attribute in the manifest. If not, the MIDlet
suite MUST NOT be installed. 

• The MIDlet.getAppProperty method must return the 
attribute value from the manifest if one is defined. If not, 
the value from the application descriptor (if any) is 
returned.

http://cmer.cis.uoguelph.ca 97



Signing a MIDlet Suite (Cont.)

• Note that the requirement that attributes values be 
equal differs from MIDP 1.0 and must be used for 
applications that are signed and verified by these 
procedures. 

• For untrusted application descriptors, the MIDP 1.0 
rule giving priority to application descriptor attributes 
over manifest attributes must be followed.

http://cmer.cis.uoguelph.ca 98



Signing a MIDlet Suite (Cont.)

• The signer of the MIDlet suite is responsible to its 
protection domain root certificate owner for 
protecting the protection domain stake holder's 
assets and capabilities and, as such, must exercise 
due-diligence in checking the MIDlet suite before 
signing it. 

http://cmer.cis.uoguelph.ca 99



Signing a MIDlet Suite (Cont.)

• In the case where there is a trusted relationship 
(possibly bound by legal agreements), a protection 
domain root certificate owner may delegate signing 
MIDlet suites to a third-party and in some 
circumstances, the author of the MIDlet.

http://cmer.cis.uoguelph.ca 100



Creating the Signing Certificate

• The signer will need to be aware of the authorization 
policy for the device and contact the appropriate 
certificate authority. 
– For example, the signer may need to send its 

distinguished name (DN) and public key (normally, 
packaged in a certificate request) to a certificate 
authority.

• The CA creates a RSA X.509 (version 3) certificate 
and returns it to the signer.

http://cmer.cis.uoguelph.ca 101



Creating the Signing Certificate 
(Cont.)

• If multiple CA's are used then all the signer certificates 
in the application descriptor MUST contain the same 
public key.

http://cmer.cis.uoguelph.ca 102



Creating the RSA SHA-1 
signature of the JAR

• The signature of the JAR is created with the signers 
private key according to the EMSA-PKCS1-v1_5 
encoding method of PKCS #1 version 2.0 
standard[RFC2437].

• The signature is base64 encoded, formatted as a single 
MIDlet-Jar-RSA-SHA1 attribute without line breaks and 
inserted in the application descriptor.
– MIDlet-Jar-RSA-SHA1: <base64 encoding of Jar 

signature>

http://cmer.cis.uoguelph.ca 103



Authenticating a 
MIDlet Suite

• When an MIDlet suite is downloaded, the device 
MUST check if authentication is required. 

• If the attribute MIDlet-Jar-RSA-SHA1 is present in 
the application descriptor then the JAR MUST be 
authenticated by verifying the signer certificates 
and JAR signature as below.

http://cmer.cis.uoguelph.ca 104



Authenticating a 
MIDlet Suite (Cont.)

• Application descriptors without the MIDlet-Jar-RSA-
SHA1 attribute are not authenticated but are installed 
and invoked as untrusted MIDlet suites.

http://cmer.cis.uoguelph.ca 105



Verify Signer Certificate

• The certification path consists of the signer certificate 
from the application descriptor and other certificates 
as needed up to but not including the root certificate.

• Get the certification path for the signer certificate from 
the application descriptor attributes MIDlet-Certificate-
1-<m> where <m> starts at 1 and is incremented by 1 
until there is no attribute with the given name. 

http://cmer.cis.uoguelph.ca 106



Verify Signer Certificate (Cont.)

– The value of each attribute is a base64 encoded 
certificate that will need to be decoded and parsed.

• Validate the certification path using the basic path 
validation processes described using the protection 
domains as the authoritative source of protection 
domain root certificates. 

http://cmer.cis.uoguelph.ca 107



Verify Signer Certificate (Cont.)

• Bind the MIDlet suite to the protection domain that 
contains the protection domain root certificate that 
validates the first chain from signer to root and 
proceed with installation.

http://cmer.cis.uoguelph.ca 108



Verify Signer Certificate (Cont.)

• If attributes MIDlet-Certificate-<n>-<m> with <n> 
greater than 1 are present and full certification path 
could not be established after verifying MIDlet-
Certificate-<1>-<m> certificates, repeatedly perform 
prior steps for the value <n> greater by 1 than the 
previous value. 

http://cmer.cis.uoguelph.ca 109



Actions upon completion of 
signer certificate verification

• Attempted to validate <n> paths. No public keys of the 
issuer for the certificate can be found or none of the 
certification paths can be validated
– Authentication fails, JAR Installation is not allowed.

• More than one full certificate path established and 
validated

http://cmer.cis.uoguelph.ca 110



Actions upon completion of signer 
certificate verification (Cont.)

– Implementation proceeds with the signature 
verification using the first successfully verified 
certificate path is used for authentication and 
authorization.

• Only one full certificate path established and validated
– Implementation proceeds with the signature 

verification

http://cmer.cis.uoguelph.ca 111



Verify the MIDlet Suite JAR

1. Get the public key from the verified signer 
certificate (above).

2. Get the MIDlet-Jar-RSA-SHA1 attribute from the 
application descriptor.

3. Decode the attribute value from base64 yielding a 
PKCS #1 signature.

4. Use the signer's public key, signature, and SHA-1 
digest of the JAR, to verify the signature. 

http://cmer.cis.uoguelph.ca 112



Verify the MIDlet
Suite JAR (Cont.)

– If the signature verification fails, reject the 
application descriptor and MIDlet suite. The 
implementation MUST NOT install the JAR on 
failure or allow MIDlets from the MIDlet suite to 
be invoked.

• Once the steps of verifying the certificate, verifying 
the signature and verifying the JAR all succeed then 
the MIDlet suite contents are known to be intact and 
the identity of the signer is known. 

http://cmer.cis.uoguelph.ca 113



Verify the MIDlet
Suite JAR (Cont.)

• This process must be performed during installation.
• It is essential that steps be performed to verify the 

digital signature in order to identify the MIDlet suite 
signer. 

• The results of the verification have a direct impact on 
authorization. 

http://cmer.cis.uoguelph.ca 114



Summary of Verification

• The following present a summary of the state and 
result

• JAD not present, JAR downloaded
– Authentication can not be performed, may install 

JAR. MIDlet suite is treated as untrusted
• JAD present but is JAR is unsigned

– Authentication can not be performed, may install 
JAR. MIDlet suite is treated as untrusted

http://cmer.cis.uoguelph.ca 115



Summary of 
Verification (Cont.)

• JAR signed but no root certificate present in the 
keystore to validate the certificate chain
– Authentication can not be performed, JAR 

installation is not allowed
• JAR signed, a certificate on the path is expired

– Authentication can not be completed, JAR 
installation is not allowed

http://cmer.cis.uoguelph.ca 116



Summary of 
Verification (Cont.)

• JAR signed, a certificate rejected for reasons other 
than expiration
– JAD rejected, JAR installation is not allowed

• JAR signed, certificate path validated but signature 
verification fails
– JAD rejected, JAR installation is not allowed

• JAR signed, certificate path validated, signature 
verified
– JAR installation is allowed

http://cmer.cis.uoguelph.ca 117



Caching of Authentication and 
Authorization Results

• The implementation of the authentication and 
authorization process may store and transfer the 
results for subsequent use and MUST ensure that 
the cached information can not be tampered with or 
otherwise compromised between the time it is 
computed from the JAR, application descriptor, and 
authentication information and the authorization 
information is used.

http://cmer.cis.uoguelph.ca 118



Caching of Authentication and 
Authorization Results (Cont.)

• It is essential that the MIDlet suite and security 
information used to authenticate and authorize a 
MIDlet suite is not compromised.
– for example, by use of removable media or 

other access to MIDlet suite storage that might 
be corrupted.

http://cmer.cis.uoguelph.ca 119



MIDP X.509 Certificate Profile 
for Trusted MIDlet Suites

• Secured trusted MIDlet suites utilize the same base 
certificate profile as does HTTPS. 

• The profile is based on the WAP Certificate Profile 
[WAPCert] which is based on RFC2459 Internet X.509 
Public Key Infrastructure Certificate and CRL Profile 
[RFC2459].

http://cmer.cis.uoguelph.ca 120



Certificate Processing 
for OTA

• Devices MUST recognize the key usage extension 
and when present verify that the extension has the 
digitalSignature bit set. 

• Devices MUST recognize the critical extended key 
usage extension and when present verify that the 
extension contains the id-kp-codeSigning object 
identifier 

• The application descriptor SHOULD NOT include a 
self-issued root certificate in a descriptor certificate 
chain.

http://cmer.cis.uoguelph.ca 121



Certificate Processing 
for OTA (Cont.)

• MIDP devices SHOULD treat the certificate as any 
other in a chain and NOT explicitly reject a chain 
with a X.509v3 self-issued CA certificate in its chain.

http://cmer.cis.uoguelph.ca 122



Certificate Expiration 
and Revocation

• Expiration and revocation of certificates supplied in 
the application descriptor is checked during the 
authorization procedure, specifically during 
certificate path validation. 

• Certificate expiration is checked locally on the 
device as such information is retrievable from the 
certificate itself. 

http://cmer.cis.uoguelph.ca 123



Certificate Expiration 
and Revocation (Cont.)

• Certificate expiration verification is a mandatory part 
of certificate path validation.

• Certificate revocation is a more complex check as it 
requires sending a request to a server and the 
decision is made based on the received response. 

• Certificate revocation can be performed if the 
appropriate mechanism is implemented on the 
device. 

http://cmer.cis.uoguelph.ca 124



Certificate Expiration 
and Revocation (Cont.)

• Such mechanisms are not part of MIDP 
implementation and hence do not form a part of 
MIDP 2.0 security framework.

• If certificate revocation is implemented in the 
device, it SHOULD support Online Certificate 
Status protocol (OCSP). 

http://cmer.cis.uoguelph.ca 125



Certificate Expiration 
and Revocation (Cont.)

• If other certificate revocation protocols are 
supported, support for these other protocols may 
indicate that a certificate has been revoked; in this 
case, it is permissible to consider the certificate as 
revoked regardless of the result returned by the 
OCSP protocol.

http://cmer.cis.uoguelph.ca 126



Examples

• Developer Owns Signing Certificate
• Protection Domain Stakeholder Owns Signing 

Certificate

http://cmer.cis.uoguelph.ca 127



Developer Owns 
Signing Certificate

• This encodes the origin of the MIDlet suite into the JAD 
(via the identity of the signer). If the certificate is 
revoked, all of the developer's signed MIDlets on every 
device for every user will have their execution 
permissions revoked.

1. Developer creates MIDlet network application

http://cmer.cis.uoguelph.ca 128



Developer Owns 
Signing Certificate (Cont.)

2. Developer encodes permissions into JAR 
manifest and creates final MIDlet JAR

3. Developer generates a private-public key pair 
with a signing certificate and has the certificate 
signed by one or more protection domain root 
certificates

4. The developer's certificate is used to sign the 
MIDlet JAR and create the associated JAD 
entries

http://cmer.cis.uoguelph.ca 129



Developer Owns 
Signing Certificate (Cont.)

5. MIDlet JAR can be distributed with a suitably 
populated JAD and run on a MIDP 2.0 compliant 
device with the appropriate protection domain 
root certificate

http://cmer.cis.uoguelph.ca 130



Protection Domain Stakeholder 
Owns Signing Certificate

• This encodes the signers identity (not the MIDlet
suite developer) into the JAD. If the certificate is 
revoked, all MIDlets signed with this particular 
certificate will have their execution permissions 
revoked.

1. Developer creates MIDlet network application
2. Developer encodes permissions into JAR manifest 

and creates final MIDlet JAR

http://cmer.cis.uoguelph.ca 131



Protection Domain Stakeholder 
Owns Signing Certificate (Cont.)

3. The protection domain stakeholder's signing 
certificate (not necessarily the root cert) is used to 
sign the MIDlet JAR and create the associated JAD 
entries

4. MIDlet JAR can be distributed with a suitably 
populated JAD and run on a MIDP 2.0 compliant 
device with the appropriate protection domain root 
certificate

http://cmer.cis.uoguelph.ca 132


