
Week II

BlackBerry
Operating System

Overview

• Introduction
• Multitasking
• Multithreading
• Messaging Services

– Asynchronous
– Synchronous

• File System Services
– Random Access to Files
– Reading from the File System

• BlackBerry Operating System APIs

http://cmer.cis.uoguelph.ca 2

Outline (Cont.)

• Radio Communication APIs
• System APIs
• System Devices Events
• Keypad APIs
• LCD APIs
• Other SDKs

http://cmer.cis.uoguelph.ca 3

Introduction

• BlackBerry OS has a multitasking environment.

• It enables heavy use of input devices like trackball, and
scroll wheel. It does not support touchpad.

• It is an event-driven Operating System.

• Later BlackBerry Smartphone's CPU architecture is
based on ARM XScale. The other BlackBerry devices has
Intel-based processors.

http://cmer.cis.uoguelph.ca 4

Introduction (Cont.)

• It supports multitasking and multithreading applications.
• Security: Any application that want to use certain

BlackBerry functionality must be digitally signed.

http://cmer.cis.uoguelph.ca 5

Multitasking Feature

• BlackBerry OS employs co-operative multitasking so no
application can preempt another application in mid-
stream, unless that application explicitly yields control.

• All applications run simultaneously and are managed by
an application server.

http://cmer.cis.uoguelph.ca 6

Multitasking Feature (Cont.)

• Each application at startup, receives an execution
thread. They may also create and destroy additional
thread dynamically.

• At no time preemption can occur between applications.
Such a design removes the need for mutual exclusion
mechanisms and semaphores.

• However, the task will take several seconds.

http://cmer.cis.uoguelph.ca 7

Multitasking Feature (Cont.)

• Threads can be run in the background waiting for
messages or data for processing, or they can be run in
foreground having control of user interfaces, display,
and input like keystrokes .

• The foreground tasks include displaying context such as
display bitmap, show on the LCD, and receiving all
keypad and trackwheel inputs.

http://cmer.cis.uoguelph.ca 8

Multitasking Feature (Cont.)

• Each task that is not in the foreground, still maintains a
copy of the LCD display bitmap in its display context. So,
it can manipulate it at any time.

• When the foreground thread is changed to a different
thread or task, the new task’s display bitmap is placed
on the LCD and now, it receives all inputs.

http://cmer.cis.uoguelph.ca 9

Threads

• Whenever, the foreground is switched from one
application to other application, the new foreground
application receives a message of type
SWITCH_FOREGROUND and wisely, the previous
foreground application receives a message of type
SWITCH_BACKGROUND.

• Foreground threads can be switched by applications
requesting a new application to be replaced on the
foreground by calling RimRequestForeground

http://cmer.cis.uoguelph.ca 10

Multitasking
Feature (Cont.)

• Communication between OS and threads is done by a
messaging system.

• Like event-driven systems, applications receive
messages describing system events and associate
parameters. Then, they post them to threads to process.

http://cmer.cis.uoguelph.ca 11

Message Services

• As described earlier, BB OS is an event-driven OS.

• This means that BB applications receive all external
notifications through events sent to the applications.

• Applications process the events. Since the process is
completed, they call the RIMGETMESSAGE function to
receive the next event.

http://cmer.cis.uoguelph.ca 12

Message Services (Cont.)

• If there is no event, the application blocks the send
process, allowing other applications to run.

• If also other applications do not have any event to
process, the application puts the CPU in a standby state
until the next event.

• There are two ways of sending messages between two
tasks: synchronous and asynchronous.

http://cmer.cis.uoguelph.ca 13

Message Services:
Asynchronous

• For asynchronous communication (non-blocking send),
applications send message to another application
messages’ queue by calling RimPostMessage. The
destination receives messages. The sending process
continues execution immediately after the call to
RimPostMessage.

http://cmer.cis.uoguelph.ca 14

Message Services:
Synchronous

• In Synchronous communications (blocking send),
applications send messages to other application’s
message queue by calling RimSendMessage and blocks
the sending process until it receives responses from the
destination.

• The destination application receives the messages by
calling RimGetMessage, put it in the queue and
processes all earlier events in its message queue.

http://cmer.cis.uoguelph.ca 15

Message Services:
Synchronous

• Then, it processes the message, and any result of the
processed message is sent to the location specified by
the sending process (if applicable).

• The sending application is unblocked and it returns form
RimSendMessage.

• Thus, in order to avoid deadlock from occuring, when
you write an application, you should run the
synchronous sends in background threads.

http://cmer.cis.uoguelph.ca 16

File System Services

• File System APIs are used to access the device’s
persistent memory.

• The BB device file system mechanism is different from
traditional file systems.

• All the file’s system non-violate data is stored in flash
memory.

• Both read and write operations are done on a flash
space.

http://cmer.cis.uoguelph.ca 17

File System Services (Cont.)

• Writing a single word on the flash involves the following
tasks[1]:
– Saving the content of entire enclosing flash sector
– Erasing the entire flash sector
– Rewriting the entire contents of the flash sector with

the changed content

http://cmer.cis.uoguelph.ca 18

File System Services (Cont.)

– The process of rewriting is like a log-structured file
system like follows:

• All writes are performed sequentially at the end of
the log file

• When data that already exists in the log file is
modified, it is added to the end of the log. The old
copy of data left in the log but it marks as dirty.

• When file system runs out of space, old segments
of the log (with a dirty flag) are cleaned.

http://cmer.cis.uoguelph.ca 19

Random Access to Files

• In desktops, file systems use indexing structures to
access files.

• This can not be used in handheld devices because of
limited resources.

• As a result, random access to a file is done by
sequentially scanning the file from the beginning. This
method in handheld device is fast, because the entire file
system in a flash memory.

http://cmer.cis.uoguelph.ca 20

Reading from the File System

• In order to optimize the speed of reading from the file
system, the file system provides a form read-only
memory mapped access.

• In disk-based file systems, memory mapped file access
is implemented through the memory management
system.

• In handhelds, file system explicitly provides lookup
tables for all of the records in the fule system.

http://cmer.cis.uoguelph.ca 21

BlackBerry OS APIs

• Radio Communication API
• Serial Communication API
• File System API
• Keypad API
• LCD API
• System API

http://cmer.cis.uoguelph.ca 22

Radio Communication APIs

• The BB Radio communication APIs provide easy access
to radio network for sending and receiving data.

• To know about these API, please refer to Radio
Developer’s Guide.

• Regarding the Radio Communication, the following
events may occur:

http://cmer.cis.uoguelph.ca 23

Radio Communication APIs

– MESSAGE_RECEIVED
– MESSAGE_SENT
– MESSAGE_NOT_SENT
– SIGNAL_LEVEL
– NETWORK_STARTED
– BASE_STATION_CHANGE
– RADIO_TURNED_OFF
– MESSAGE_STATUS

http://cmer.cis.uoguelph.ca 24

System APIs

• System APIs include a variety of functionalities. They
provide functions for thread management, message
handling, and task switching.

• They also provides function for memory allocation,
timers, alarm and the system clock.

• Threads can provide information about battery status,
language, handheld status.

http://cmer.cis.uoguelph.ca 25

System Devices Events

• The following system events may occur:
– SWITCH_BACKGROUND
– SWITCH_FOREGROUND
– POWER_OFF/POWER_UP
– BATTERY_LOW
– TASK_LIST_CHANGED
– Timer Device Events
– RTC device Events

http://cmer.cis.uoguelph.ca 26

Keypad APIs

• Keypad functions are :
– KeypadBeep: turns key tones on or off.
– KeypadRate: configure the keypad for auto key

repeat.
– KeypadRegister: allows an application to intercept

global hot keys.
• The events include:

– THUMB_CLICK, THUMB_UNCLICK,
THUMB_ROLL_UP, THUMB_ROLL_DOWN

– KEY_DOWN, KEY_REPEAT, KEY_STATUS

http://cmer.cis.uoguelph.ca 27

LCD APIs

• LCD APIs provides a variety of functions for LCD.

http://cmer.cis.uoguelph.ca 28

Other APIs

– There are a variety of APIs for BlackBerry OS including:
• Radio API SDK
• UI Engine API SDK
• Database API SDK
• Extended API including:

– Address Book API SDK.
– AutoText API SDK.
– Messaging API SDK.
– Ribbon API SDK.

– In order to access them, please refer to SDKs in the
RIM Web site.

http://cmer.cis.uoguelph.ca 29

References

• [1] BlackBerry Operating System APIs: Developer’s
Guide.

• [2] BlackBerry Software Development Kit.

http://cmer.cis.uoguelph.ca 30

