
Java ME &
Blackberry APIs
for Game Dev

Week III

Overview

• Java 2D API
• Java 3D API
• SVG
• Blackberry APIs

http://cmer.cis.uoguelph.ca 2

Java 2D API

• Set of classes for advanced 2D graphics and
imaging

• Encompasses
– Line art
– Text
– Images

• Provides extensive support for
– Image composition
– Alpha channel images

http://cmer.cis.uoguelph.ca 3

Interfaces and Classes

• Java.awt - Interfaces
– Composite

• Defines methods to compose a draw
primitive with the underlying graphics
area.

– CompositeContext
• Defines the encapsulated and optimized

environment for a composite operation
– Paint

• Defines colors for a draw or fill operation
http://cmer.cis.uoguelph.ca 4

Interfaces and Classes (Cont.)

• Continued…
– PaintContext

• Defines the optimized environment for a
pain operation

– Stroke
• Generates the Shape that encloses the

outline of the Shape to be rendered.

http://cmer.cis.uoguelph.ca 5

Interfaces and Classes (Cont.)

• Java.awt Classes
– AffineTransform (java.awt.geom)

• Represents a 2D affine transform, which performs a
linear mapping from 2D coordinants to other 2D
coordinants

– AlphaComposite
• Implements basic alpha composite rules for shapes, text

and images
– BasicStroke

• Defines the “pen style” to be applied to the Shape
– Color

• Defines a solid color fill for a Shape

http://cmer.cis.uoguelph.ca 6

Interfaces and Classes (Cont.)

• Continued
– GradientPaint

• Defines a linear color gradient fill pattern
for a Shape

– Graphics2D
• Fundamental class for 2D rendering.

– TexturePaint
• Defines a texture or pattern fill for a Shape.

http://cmer.cis.uoguelph.ca 7

2D Rendering Concepts

• To render a graphic object you must
– Set up a Graphics2D context then
– Pass the graphic object to one of the

Graphics2D rendering methods

http://cmer.cis.uoguelph.ca 8

2D Rendering Concepts (Cont.)

• You can modify the state attributes to:
– Vary the stroke width
– Change how strokes are joined together
– Set a clipping path to limit the rendered area
– Translate, rotate, scale or shear rendered

objects
– Define colors and patterns to fill shapes with
– Specify how multiple graphics objects should

be composed.

http://cmer.cis.uoguelph.ca 9

Rendering Process

• Rendering process can be broken into 4 steps
1. If the shape is to be stroked, the Stroke

attribute in the Graphics2D context is used to
generate a new Shape that encompasses the
stroked path

2. The coordinates of the Shape’s path are
transformed from user space into device
space according to the transform attribute in
the Graphics2D context

http://cmer.cis.uoguelph.ca 10

Rendering Process (Cont.)

3. The Shape’s path is clipped using the clp
attribute in the Graphics2D context

4. The remaining Shape, if any, is filled using the
Paint and Composite attributes in the
Graphics2D context

http://cmer.cis.uoguelph.ca 11

Controlling Rendering Quality

• 2D API lets you indicate whether you want
objects to be rendered as quickly as possible

• Or quality rendering to be s high was possible
• Your preferences are specified as hints through

the RenderingHints attribute in the Graphics2D
context

http://cmer.cis.uoguelph.ca 12

Controlling
Rendering Quality (Cont.)

• RenderingHints class supports the following
types of hints:
– Alpha interpolation – can be set to default,

quality, or speed
– Antialiasing – can be set to default, on or off
– Color Rendering – can be set to default,

quality, or speed
– Dithering – can be set to default, disable or

enable

http://cmer.cis.uoguelph.ca 13

Controlling
Rendering Quality (Cont.)

• RenderingHints continued
– Fractional Metrics – can be set to default

on/off
– Interpolation – can be set to nearest-

neighbor, bilinear, or bicubic
– Rendering – can be set to default, quality, or

speed
– Text antialiasing – can be set to default,

on/off

http://cmer.cis.uoguelph.ca 14

Filling Attributes

• The fill attribute in the Graphics2D context is
represented by a Pain object
– Use setPaint to add Paint to the Graphics2D

• Simple solid color fills can be set with the
setColor method. Color is the simplest
implementation of the Paint interface

http://cmer.cis.uoguelph.ca 15

Filling Attributes (Cont.)

http://cmer.cis.uoguelph.ca 16

• To fill Shapes with more complex paint styles like gradients and textures,
use Paint classes:

– GradientPaint and TexturePaint

 When fill is called to render a shape:
 Determines what pixels comprise the Shape.
 Gets the color of each pixel from the Paint object.
 Converts the color to an appropriate pixel value for the output device.
 Writes the pixel to that device.

Transformations

• The Graphics2D context contains a transform that is
used to transform objects from user space to device
space during rendering

• To perform additional transformations, like rotations or
scaling, add other transforms to the Graphics2D context

• Simplest transform ability is to call methods like:
– Rotate - Scale
– Shear - Translate

http://cmer.cis.uoguelph.ca 17

Transformations (Cont.)

• Other Abilities include
– Transparency / Managing Transparency
– Clipping
– Specifying Composition Style

http://cmer.cis.uoguelph.ca 18

Java 3D API

• Is an application programming interface for writing 3-
dimensional graphics applications

• Gives high-level constructs for
– creating and manipulating 3D geometry
– for constructing the structures used in rendering that

geometry
• Part of JavaMedia suite API, making it “write once, run

anywhere”

http://cmer.cis.uoguelph.ca 19

Java 3D API (Cont.)

• It draws the ideas from existing graphics APIs and from
new technology.

• Java 3D’s low-level graphics constructs synthesize the
best ideas found in low-level APIs such as Direct3D,
QuickDraw3D, OpenGL, and XGL

• Java 3D introduces some concepts not commonly
considered part of the graphics environment, ex 3D
spatial sound

http://cmer.cis.uoguelph.ca 20

Rendering Modes

• Immediate Mode
– Raised level of abstraction and accelerates immediate

mode rendering on a per-object basis
• Retained Mode

– Requires an application to construct a scene graph
and specify which elements of that scene graph may
change during rendering

• Compiled-Retained Mode
– Like retained mode, additional the application can

compile some or all of the subgraphs that make up a
complete scene graph

http://cmer.cis.uoguelph.ca 21

High Performance

• Target Hardware Platforms
– Aimed at a wide range of 3d-capable hardware and

software platforms, from low to high end 3D image
generators

– 3D implementations are expected to provide useful
rendering rates on most modern PCs, on midrange
PCs near full-speed hardware performance

– Java 3D is designed to scale as the underlying
hardware platforms increase in speed over time.

http://cmer.cis.uoguelph.ca 22

High Performance (Cont.)

• Layered Implementation
– One of the more important factors that determines

performance is the time it takes to render the visible
geometry

– Java 3D is layered to take advantage of native low-
level API that is available on a given system

– In particular, implementations use Direct3D and
OpenGL are available.

http://cmer.cis.uoguelph.ca 23

Recipe for a Java 3D Program

• An example for the steps to create scene graph
elements and link them together

1. Create a Canvas3D and add it
2. Create a BranchGroup as the root of the scene branch

graph
3. Construct a Shape3D node with a TransformGroup

node above it
4. Attach a RotationInterpolator behavior to the

TransformGroup.

http://cmer.cis.uoguelph.ca 24

Recipe for a Java 3D Program
(Cont.)

5. Call the simple universe utility function to do the
following:

 Establish a virtual universe with a single high-res
Locale

 Create PhysicalBody, PhysicalEnvironment, View,
and ViewPlat-form objects

 Create a BranchGroup s the root of the view
platform branch graph

 Insert the view platform branch graph into the
Locale

6. Insert the scene branch graph into the simple
universe’s Locale

http://cmer.cis.uoguelph.ca 25

Java 3D Application
Scene Graph

• Below is a sample application
• The scene graph consists of a superstructure

components-a VirtualUniverse object, a Locale object
and a set of branch graphs.

• Each branch graph is a subgraph that is rooted by a
BranchGroup node that is attached to the super
structure.

http://cmer.cis.uoguelph.ca 26

Java 3D Object Hierarchy

http://cmer.cis.uoguelph.ca 27

SVG

• Scalable Vector Graphics
• SVG is a web format that allows content developers to

create two dimensional graphics in a standard way,
using XML grammar.

• Several authoring tools already support this format
(such as Adobe Illustrator and Corel Draw)

http://cmer.cis.uoguelph.ca 28

SVG: Example

<svg width="640" height="240">
<title>SVG Hello World! Example</title>
<defs>

<linearGradient id="the_gradient"
gradientUnits="objectBoundingBox"
x1="0" y1="0"
x2="1" y2="0">
<stop offset="0" stop-color="rgb(204,204,255)"/>
<stop offset="0.2" stop-color="rgb(204,204,255)"/>
<stop offset="1" stop-color="rgb(102,102,204)"/>

</linearGradient>
</defs>
<g>

<rect x="0" y="0" width="640" height="480" fill="url(#the_gradient)"/>
<text x="145" y="140" transform="translate(175,140) scale(4) skewX(30)
translate(-175,-140)" font-size="24" font-family="ComicSansMS"
fill="rgb(255,255,102)">Hello World!</text>

</g>
</svg>

http://cmer.cis.uoguelph.ca 29

SVG: Example

http://cmer.cis.uoguelph.ca 30

• The code would output an image like this:

Blackberry

• Important Objects used in creation
– BitmapField
– ButtonField
– LabelField

http://cmer.cis.uoguelph.ca 31

Blackberry - Managers

• The following four classes extend the Manager class:
– VerticalFieldManager
– HorizontalFieldManager
– FlowFieldManager
– DialogFieldManager

http://cmer.cis.uoguelph.ca 32

References

• Java 2D API
http://java.sun.com/j2se/1.4.2/docs/guide/2d/index.html

• Java 3D API
http://java.sun.com/javase/technologies/desktop/java3d/f
orDevelopers/J3D_1_2_API/j3dguide/Intro.doc.html

• Java AVG
http://java.sun.com/developer/technicalArticles/GUI/svg/

http://cmer.cis.uoguelph.ca 33

