
Week 1

Game Design & 
Development for 
Mobile Devices



Overview

• Introduction
• Phone Differences
• Approaches
• Challenges
• Development

http://cmer.cis.uoguelph.ca 2



Introduction

• JavaME is relatively easy to learn

• It is misleading to suggest that 
mobile game development is 
simpler than on the PC or console

• Ideally, a J2ME game developed for 
one device should run on all 
devices with the same APIs

http://cmer.cis.uoguelph.ca 3



Phone Differences

• There are several reasons why there are so many 
phone models
– Mobile phones are highly personal; each one is 

designed for a specific usage pattern
• I.e. enterprise users, messaging teenagers, 

gamers, price conscious people, etc
– Manufacturers need to differentiate their product

• They adopt different CPUs, memory sizes, UIs, 
operating systems, screen sizes, etc

http://cmer.cis.uoguelph.ca 4



Phone Differences (Cont.)

• Providers need to differentiate their 
offerings
– Customizing their hardware or software

• Enabling/disabling functionality (i.e. 
NexTel disallows consumers to run 3rd

party Java applications)

• Mobile phones are evolving faster than 
Moore’s Law.
– Hundreds of new models every year.

http://cmer.cis.uoguelph.ca 5



Phone Differences (Cont.)

• Supporting all the popular devices will 
maximize the game’s chance of success

• Java games ported for different devices 
need to be tested and optimized on each 
device

• Example; Nokia devices series 60 and 
series 40 have very different screen sizes, 
memory sizes and CPUs

http://cmer.cis.uoguelph.ca 6



Phone Differences (Cont.)

• Different devices have different bugs, or 
problems in their Thread or memory 
management implementations

http://cmer.cis.uoguelph.ca 7



Approaches

• Java is object-oriented
• Object-oriented approach provides 

maintainability and extensibility. 
• This is normally a good thing
• In the mobile world memory is 

expensive
– It is best to avoid multiple 

objects unless necessary
• Do not write one massive super 

class

http://cmer.cis.uoguelph.ca 8



Approaches (Cont.)

• Write your game in the simplest manner 
that is comfortable

• Afterwards, merge classes that do not 
provide much gain in functionality

http://cmer.cis.uoguelph.ca 9



Challenges

• Supporting many different devices in a 
fragmented market

• Different hardware limitations
– CPU
– Screen size
– memory

• Cost of porting games (if needed)

http://cmer.cis.uoguelph.ca 10



Memory Limitations

• 3 Times of memory
– Working, storage, and application 

memory

• Working memory is where the game is in 
runtime
– A game too big will throw a out of 

memory error

• Storage memory is where all the high 
scores, user options, and other state data.

http://cmer.cis.uoguelph.ca 11



Memory Limitations (Cont.)

• The game itself takes up storage 
(application) memory

• Application memory takes into account all 
of the games and applications stored

• Code the game accordingly to memory 
constraints
– Consult manufacturer specifications

• Check the maximum size a game can be 
during runtime and memory storage 
available

http://cmer.cis.uoguelph.ca 12



Screen Limitations

• A fairly big challenge
• Displays differentiate not only from 

manufacturer to manufacturer, but from 
model to model too

• Consider
– Screen size
– Frame rate
– Colour

http://cmer.cis.uoguelph.ca 13



Screen Limitations (Cont.)

• Target devices to design games for

• Good idea to create games 
generically, then make alternate 
versions for different mobile 
devices

http://cmer.cis.uoguelph.ca 14



Improve Performance

• Decide which type of model you will develop for.
– Lower end or higher end
– Lower end have most of the market

• Optimization
– Use shorter variable, method and class names
– Avoid unnecessary protocols
– Reuse objects rather then instantiating new 

ones
– Merge graphics into one sheet instead of 

several separate graphics
– Obfuscate your code to

• Prevent reverse engineering
• Significantly reduce final jar size

http://cmer.cis.uoguelph.ca 15



Development

• Beginners should start development with 
a higher end device that has the least 
amount of API constraints.

• This allows the developer to focus on 
proper game design and API usage
– Without worrying about limitations

http://cmer.cis.uoguelph.ca 16



Development (Cont.)

• A good start: 
– Start with a device that has MDIP 2

• As a developer becomes more experienced, 
moving to an older or more restrictive 
device would be a good idea

http://cmer.cis.uoguelph.ca 17



Development (Cont.)

• Porting a game from strong device to a more 
restrictive device requires
– Reworking the graphics
– Changing the game play

• A strength in mobile games is large volume 
that it occupies in the market

• Mostly low end devices are in the market

http://cmer.cis.uoguelph.ca 18


