
Creating Network
Connections

Overview

• Fetching Data Using HTTP or TCP Sockets
• Required Network Information
• Types of Gateways
• HTTP Connection Steps
• HTTP Authentication
• HTTPS Connections
• Socket Connections
• Datagram Connections
• WIFI
• USB Send/Receive Examples
• Bluetooth

http://cmer.cis.uoguelph.ca 2

Fetching Data
Using HTTP or TCP Sockets

• BlackBerry Java Applications can use HTTP, HTTPS, and
TCP socket protocols to establish connections over the
wireless network

• When establishing the connection over the cellular
network, a BlackBerry Java Application can use one of
two wireless gateways to proxy the connection to the
Internet or the corporate intranet.

• The application can be designed to rely on the default
gateway that is available to the BlackBerry device user,
or could be customize though your code to explicitly
select a preferred gateway.

http://cmer.cis.uoguelph.ca 3

Required Network Information

• The following is the network information that is required
in order to create connections
– Determine the name of the wireless network that the

BlackBerry device is registered with
– Verify that the BlackBerry is in network coverage
– Explicitly selecting a gateway

http://cmer.cis.uoguelph.ca 4

Required Network
Information (Cont.)

• Determining the name of the wireless network
– The device must be registered with a wireless

network for this method to work.
– This is done by Invoking

RadioInfo.getCurrentNetworkName().
– Example

• String networkName =
RadioInfo.getCurrentNetworkName();

• System.out.println (“Network Name: “ +
networkName);

http://cmer.cis.uoguelph.ca 5

Required Network
Information (Cont.)

• Verify that the BlackBerry is in network coverage
– Use the CoverageInfo class and

CoverageStatusListener interface of the
net.rim.device.api.system package to make sure that
the device is in network coverage

http://cmer.cis.uoguelph.ca 6

Required Network
Information (Cont.)

• Explicitly selecting a gateway
– Set up your application to use the preferred gateway

for a connection and to use the default gateway only
when the preferred gateway is not available.

– There are two types of gateways that can be setup
• Using the BlackBerry Enterprise Server as an

intranet gateway
• Using the wireless service provider's Internet

gateway

http://cmer.cis.uoguelph.ca 7

Types of Gateways

• Using the BlackBerry Enterprise Server (BES) as an intranet gateway
– All traffic between your application and the BES is automatically

encrypted using AES or triple DES encryption.
– Since the BES resides behind the corporate firewall and provides

inherent data encryption, these applications can communicate
with application servers and web servers that reside on the
corporate intranet.

– If your application connects to the Internet rather than to the
corporate intranet, could possibly use the BES that belongs to the
customer as a gateway as well.

• Network requests travel behind the corporate firewall to the
BES, which makes the network request to the Internet through
the corporate firewall.

• An IT policy can be set to enforce that the BESis the gateway
for all wireless network traffic, including traffic destined for
the Internet.

http://cmer.cis.uoguelph.ca 8

Types of Gateways (Cont.)

• Using the wireless service provider's Internet gateway
– applications for the devices can connect to the Internet using

the Internet gateway that the wireless service provider
provides.

– Most wireless service providers provide their own Internet
gateway that offers direct TCP/IP connectivity to the Internet.

– Some operators also provide a WAP gateway that lets HTTP
connections occur over the WAP protocol. Either of these
gateways can be used to establish connections to the Internet.

– If the application is intended for users on a specific wireless
network, this approach is recommended.

– If the application is intended for a variety of wireless networks,
testing your program against the different Internet gateways
and achieving a consistent and reliable experience can be
challenging.

http://cmer.cis.uoguelph.ca 9

HTTP Connection Steps

• Make sure that before you open an HTTP connection, verify
that the device is in a network coverage area.
– Use the CoverageInfo class and CoverageStatusListener

interface of the net.rim.device.api.system package to make
sure that the BlackBerry device is in network coverage.

• Open an HTTP connection
– Invoke Connector.open(), specifying http as the protocol.
– Cast the returned object as an HttpConnection or a

StreamConnection object.
HttpConnection conn = null;
String URL = "http://www.myServer.com/myContent";
conn = (HttpConnection)Connector.open(URL);

http://cmer.cis.uoguelph.ca 10

HTTP Connection Steps (Cont.)

• Set the HTTP request method (GET or POST)
– Invoke HttpConnection.setRequestMethod().

conn.setRequestMethod(HttpConnection.POST);
• Set header fields

– Invoke setRequestProperty() on the HttpConnection.
conn.setRequestProperty("User-Agent",

"BlackBerry/3.2.1");
• Retrieve header fields

– Invoke getRequestProperty() on the HttpConnection.
String lang = conn.getRequestProperty("Content-
Language");

http://cmer.cis.uoguelph.ca 11

HTTP Connection Steps (Cont.)

• Send and receive data
– Invoke openInputStream() and openOutputStream()

on the HTTPConnection.
InputStream in = conn.openInputStream();
OutputStream out = conn.openOutputStream();

http://cmer.cis.uoguelph.ca 12

HTTP Authentication

• Before opening an HTTP connection, verify that the
BlackBerry device is in network coverage.

• Open an HTTP connection.
– Invoke Connector.open(), using the HTTP

location of the protected resource.
– Cast and store the returned object as a

StreamConnection.
StreamConnection s =

(StreamConnection)Connector.open("http://my
site.com/myProtectedFile.txt");

– Cast and store the StreamConnection object as
an HTTPConnection object.

HttpConnection httpConn = (HttpConnection)s;

http://cmer.cis.uoguelph.ca 13

HTTP Authentication (Cont.)

• Determine the status of the HTTP connection.
– Invoke HttpConnection.getResponseCode().

int status = httpConn.getResponseCode();
• Retrieve login information from a user.

– Create code that manages an unauthorized HTTP connection attempt.
int status = httpConn.getResponseCode();
switch (status)
case (HttpConnection.HTTP_UNAUTHORIZED);

– Create a run()method and within it implement a dialog object to ask the
BlackBerry device user for login information.

UiApplication.getUiApplication().invokeAndWait(new Runnable()) {
public void run()
{

dialogResponse = Dialog.ask;
(Dialog.D_YES_NO,"Unauthorized Access:\n Do you

wish to log in?");
}

}

http://cmer.cis.uoguelph.ca 14

HTTP Authentication (Cont.)

• Process the response of the user.
– Create code that manages a Yes dialog response.
– Retrieve the login information and close the current

connection.
if (dialogResponse == Dialog.YES)
{String login = "username:password";
//Close the connection.
s.close();

– Encode the login information.
byte[] encoded =
Base64OutputStream.encode(login.getBytes(), 0,
login.length(), false, false);

http://cmer.cis.uoguelph.ca 15

HTTP Authentication (Cont.)

• Use the login information to access the protected resource.

– Open a new HTTPConnection and add the authorization
header by invoking
HTTPConnection.setRequestProperty()using the encoded
login information.

s =
(StreamConnection)Connector.open("http://mysite.com/
myProtectedFile.txt ");

httpConn = (HttpConnection)s;
httpConn.setRequestProperty("Authorization", "Basic " +

new String(encoded));

http://cmer.cis.uoguelph.ca 16

Using HTTPS Connections

• Make sure that before you open an HTTP connection,
verify that the device is in a network coverage area.
– Use the CoverageInfo class and

CoverageStatusListener interface of the
net.rim.device.api.system package to make sure that
the BlackBerry device is in network coverage.

• Open an HTTP connection
– Invoke Connector.open(), specifying HTTPS as the

protocol.
– Cast the returned object as an HttpsConnection

object.
HttpsConnection stream =

(HttpsConnection)Connector.open("https://host:44
3/");

http://cmer.cis.uoguelph.ca 17

HTTPS Connections (Cont.)

• Specify the connection mode.
– If your BlackBerry is associated with a BES and uses

an HTTPS proxy server that requires authentication,
you will not be able to use end-to-end TLS.

– To open an HTTPS connection in end-to-end mode,
add one of the following parameters to the connection
string that passes to Connector.open():

• Specify that an end-to-end HTTPS connection
must be used from the device to the target server:
EndToEndRequired.

http://cmer.cis.uoguelph.ca 18

HTTPS Connections (Cont.)

• Specify that an end-to-end HTTPS connection should be
used from the BlackBerry device to the target server. If
the device does not support end-to-end TLS, and the
BlackBerry device user permits proxy TLS connections,
then a proxy connection is used: EndToEndDesired.

HttpsConnection stream =
(HttpsConnection)Connector.open("http
s://host:443/;EndToEndDesired");

http://cmer.cis.uoguelph.ca 19

Socket Connections

• Although you can implement HTTP over a socket connection,
you should use an HTTP connection for the following reasons:
– Socket connections do not support BlackBerry MDS

features, such as push.
– Applications that use socket connections typically require

significantly more bandwidth than BlackBerry Java
Applications that use HTTP connections

• When Opening a Socket connection, the deviceside parameter
needs to specify whether or not the connection uses
BlackBerry MDS Services [(deviceside=false)] or direct TCP
[(deviceside=true)].

http://cmer.cis.uoguelph.ca 20

Socket Connection (Cont.)

• If you do not specify the optional deviceside parameter,
the following results occur:
– The connection uses direct TCP by default for any

BlackBerry on the iDEN network (Series 6510, 7510,
7520, 7100i).

– On all other BlackBerry devices, BlackBerry MDS
Services is used by default

– If the MDS Services is not available, the BlackBerry
device uses direct TCP.

http://cmer.cis.uoguelph.ca 21

Creating Socket Connections

• Before opening a socket connection, verify that the device is in
network coverage.

• Open a socket connection using the MDS Services.
– Invoke Connector.open(), specifying socket as the protocol and

appending the deviceside=false parameter to the end of the URL.
The application must input their local machine’s IP explicitly
because localhost is not supported.

private static String URL =
"socket://local_machine_IP:4444;deviceside=false";

StreamConnection conn = null;
conn = (StreamConnection)Connector.open(URL);

http://cmer.cis.uoguelph.ca 22

Creating Socket Connections
(Cont.)

• Open a socket connection over direct TCP
– Invoke Connector.open(), specifying socket as the protocol,

appending the deviceside=true parameter to the end of the
URL.

private static String URL =
"socket://local_machine_IP:4444;devicesid
e=true";

StreamConnection conn = null;
conn =

(StreamConnection)Connector.open(URL);

http://cmer.cis.uoguelph.ca 23

Creating Socket Connections
(Cont.)

• Open a socket connection over direct TCP, specifying APN information.
– Invoke Connector.open(), specifying socket as the protocol, appending

the deviceside=true parameter to the end of the URL. Specify the following
APN parameters:

• The APN parameter contains the APN over which the connection will
be made.

• The tunnelauthusername parameter contains the user name to
connect to the APN.

• The tunnelauthpassword parameter contains the password for the
tunnelauthusername.

– The tunnelauthusername and tunnelauthpassword parameters can be
omitted from the connection URL if they are not required by the APN.

– If you are creating a direct TCP connection, use these parameters.
– Connections through the MDS Services are automatically routed by the

device; therefore, no APN information is required.
private static String URL =

"socket://local_machine_IP:4444;deviceside=true;apn=internet.com;tu
nnelauthusername =user165;tunnelauthpassword=user165password";

StreamConnection conn = null;
conn = (StreamConnection)Connector.open(URL);

http://cmer.cis.uoguelph.ca 24

Creating Socket Connections
(Cont.)

• Send and receive data.
– Invoke openInputStream() and openOutputStream().

OutputStreamWriter _out = new
OutputStreamWriter(conn.openOutputStream());

String data = "This is a test";
int length = data.length();
_out.write(data, 0, length);
InputStreamReader _in = new

InputStreamReader(conn.openInputStream());
char[] input = new char[length];
for (int i = 0; i < length; ++i) {

input[i] = (char)_in.read();
};

http://cmer.cis.uoguelph.ca 25

Creating Socket Connections
(Cont.)

• Close the Socket connection.
– Invoke close() on the input and output streams and

the socket connection.
_in.close();
_out.close();
conn.close();

– Each of the close() methods throws an IOException.
– Make sure that your application implements exception

handling.

http://cmer.cis.uoguelph.ca 26

Datagram Connections

• Datagrams are independent packets of data that
applications send over networks.

• A Datagram object is a wrapper for the array of bytes
that is the payload of the datagram.

• You would use a datagram connection to send and
receive datagrams.

• To use a datagram connection, you must have your own
infrastructure to connect to the wireless network,
including an APN for GPRS networks.

• Using UDP connections requires that you work closely
with service providers and verify that the provider
supports UDP connections.

http://cmer.cis.uoguelph.ca 27

Using Datagram Connections

• Before opening a datagram connection, verify that the device
is in network coverage.

• Open a datagram connection
– Invoke Connector.open(), specifying udp as the protocol.
– Cast the returned object as a DatagramConnection object.

(DatagramConnection)Connector.open("udp://host:dest_p
ort[;src_port]/apn");

• where:
– host is the host address in dotted ASCII-

decimal format.
– dest-port is the destination port at the host

address (optional for receiving messages).
– src-port is the local source port (optional).
– apn is the network APN in string format.

http://cmer.cis.uoguelph.ca 28

Datagram Connections (Cont.)

• Receive datagrams from all ports at the specified host.
– Omit the destination port in the connection string.

• Open a datagram connection on a non-GPRS network.
– Specify the source port number, including the trailing slash

mark.
– Eg. the address for a CDMA network connection would be

udp://121.0.0.0:2332;6343/.
– You can send and receive datagrams on the same port.

http://cmer.cis.uoguelph.ca 29

Datagram Connections (Cont.)

• Create a datagram.
– Invoke DatagramConnection.newDatagram().

Datagram outDatagram = conn.newDatagram(buf,
buf.length);

• Add data to a diagram.
– Invoke Datagram.setData().

byte[] buf = new byte[256];
outDatagram.setData(buf, buf.length);

http://cmer.cis.uoguelph.ca 30

Datagram Connections (Cont.)

• Send data on the datagram connection.
– Invoke send() on the datagram connection.

conn.send(outDatagram);
– If an application attempts to send a datagram on a

datagram connection and the recipient is not listening
on the specified source port, an IOException is
thrown.

– Make sure that the BlackBerry Java Application
implements exception handling.

http://cmer.cis.uoguelph.ca 31

Datagram Connections (Cont.)

• Receive data on the datagram connection.
– Invoke receive() on the datagram connection. Since

the receive() method blocks other operations until it
receives a data packet, use a timer to retransmit the
request or close the connection if a reply does not
arrive.

byte[] buf = new byte[256];
Datagram inDatagram = conn.newDatagram(buf,

buf.length);
conn.receive(inDatagram);

http://cmer.cis.uoguelph.ca 32

Datagram Connections (Cont.)

• Extract data from a datagram.
– Invoke getData(). If you know the type of data that you

are receiving, convert the data to the appropriate
format.

String received = new String(inDatagram.getData());
• Close the datagram connection.

– Invoke close() on the input and output streams, and
on the datagram connection object.

http://cmer.cis.uoguelph.ca 33

Wi-Fi

• Determine if the transceiver for the WLAN is on:
– Create an IF statement that tests the value of RadioInfo.WAF_WLAN and

the value returned by RadioInfo.getActiveWAFs()
if ((RadioInfo.getActiveWAFs() & RadioInfo.WAF_WLAN) != 0) { … }

• Determine if the transceiver is connected to an access point:
– From the net.rim.device.api.system package, import the WLANInfo class
– Create an IF statement that tests the value of

WLANInfo.WLAN_STATE_CONNECTED and the value returned by
WLANInfo.getWLANState()

if (WLANInfo.getWLANState() == WLANInfo.WLAN_STATE_CONNECTED) {…}
– The WLANInfo.getWLANState() method checks if a BlackBerry device has

an IP address and can transfer data over a Wi-Fi network. If the transceiver
for the WLAN wireless access family is off, this method returns
WLANInfo.WLAN_STATE_DISCONNECTED

http://cmer.cis.uoguelph.ca 34

Wi-Fi (Cont.)

• You can retrieve status information such as the data rate of the
connection, the wireless LAN standards used (802.11a, b or g), the
SSID of the associated access point, or the name of the Wi-Fi profile
in use

• The transceiver for the WLAN wireless access family must be
connected to a wireless access point.

• From the net.rim.device.api.system package, import the WLANInfo
class.

• Invoke WLANInfo.getAPInfo(), storing a reference to
WLANInfo.WLANAPInfo that this method returns. The
WLANInfo.WLANAPInfo object contains a snapshot of the current
wireless network.

• WLANInfo.WLANAPInfo info = WLANInfo.getAPInfo();
• If the BlackBerry device is not connected to an access point, the

WLANInfo.getAPInfo() method returns null.
• See the API reference for the BlackBerry Java Development

Environment for more information about WLANInfo.WLANAPInfo.

http://cmer.cis.uoguelph.ca 35

Wi-Fi (Cont.)

• Determine if the BlackBerry device is accessing a wireless network
through a wireless access point:
– Invoke the RadioInfo.getNetworkService method using the

RadioInfo.WAF_3GPP parameter
– In the bitmask of the RadioInfo.NETWORK_SERVICE_* flags that

the getNetworkService(int)method returns, check to see if the
RadioInfo.NETWORK_SERVICE_GAN flag is set in the return value

• When a 3GPP wireless access family generates a transceiver event,
determine if the BlackBerry device is accessing a wireless network
through a wireless access point
– When the listener’s

RadioStatusListener.networkServiceChange(int networked, int
service) method is invoked, check for the
RadioInfo.NETWORK_SERVICE_GAN flag in the service parameter

– If this flag is set in the service parameter, the BlackBerry device is
accessing a wireless network through a wireless access point

http://cmer.cis.uoguelph.ca 36

Wi-Fi (Cont.)

• Receive notifications of changes in the connectivity state of a
Blackberry device:
– Use the addListener()methods of the CoverageInfo class

• Determine if the BlackBerry device has enough wireless
coverage to attempt a direct TCP connection through a
wireless access point:
– Invoke

isCoverageSufficient(COVERAGE_CARRIER,RadioInfo.WA
F_WLAN,false)

• Determine if the BlackBerry device has enough wireless
coverage to attempt a WLAN enterprise connection through a
wireless access point:
– Invoke isCoverageSufficient(COVERAGE_MDS,

RadioInfo.WAF_WLAN, false)

http://cmer.cis.uoguelph.ca 37

Wi-Fi (Cont.)

• Open a Wi-Fi socket connection:
– Invoke Connector.open(), specify socket as the protocol, and

append the deviceside=true parameter and the interface=wifi
parameter to the end of the URL string value

private static String URL = "socket://local_machine_IP:4444;
deviceside=true;interface=wifi";
StreamConnection conn = null;
conn = (StreamConnection)Connector.open(URL);

• Open a Wi-Fi HTTP connection:
– Invoke Connector.open(), specify http as the protocol, and append

the interface=wifi parameter to the end of the URL string value
– Cast the returned object as an HttpConnection or a

StreamConnection object
HttpConnection conn = null;
String URL =

"http://www.myServer.com/myContent;deviceside=true;interface=
wifi";

conn = (HttpConnection)Connector.open(URL);

http://cmer.cis.uoguelph.ca 38

Wi-Fi (Cont.)

• Open a Wi-Fi HTTPS connection:
– Invoke Connector.open(), specify https as the

protocol, and append the interface-wifi parameter to
the end of the URL string value

– Cast the returned object as an HttpsConnection
object

HttpsConnection conn = null;
String URL = "https://host:443/;
deviceside=true;interface=wifi";
conn = (HttpsConnection)Connector.open(URL);

http://cmer.cis.uoguelph.ca 39

USB/Serial

• USB and serial connections allow BlackBerry applications to
communicate with desktop applications and peripheral
devices connected to the BlackBerry

• It is possible to simulate a USB connection using the
BlackBerry Simulator

http://cmer.cis.uoguelph.ca 40

USB Send Example

USB Send

//create the comm connection with USB as the port
StreamConnection con = _

(StreamConnection)Connector.open("comm:COM1;baudrate=9600;bitsperchar
=8 ;parity=none;stopbits=1");

//create a data output stream from the USB connection stream
DataOutputStream dos = con.openDataOutputStream();

//the string to send
String sdata = "This is a test";

//send the data
dos.writeChars(sdata);

//close the connections
dos.close();
con.close();

http://cmer.cis.uoguelph.ca 41

USB Send Example (Cont.)

• In the example, a StreamConnection object is created
through the Connector.open() method

• This object represents the USB connection
• In the example this connection is connected on com port

1, with baud rate at 9600bps, 8 bits per character, no
parity, and 1 stop bit

• Next, a DataOutputStream object is created to be used
for transmission

• A test message, “this is a test”, is then created and
assigned to the String sdata

• The test message is then put into the output stream
• The connection and outputstream are closed

http://cmer.cis.uoguelph.ca 42

USB Receive Example

USB Receive

//create the comm with USB as the port
StreamConnection con = _

(StreamConnection)Connector.open("comm:COM1;baudrate=960
0;bitsperchar=8 ;parity=none;stopbits=1");

//create a data input stream from the USB connection stream
DataInputStream dis = con.openDataInputStream();

//receive the data
String rdata = dis.readUTF();

//close the connections
dis.close();
con.close();

http://cmer.cis.uoguelph.ca 43

USB Receive Explained

• In the example, a StreamConnection object is created
through the Connector.open() method

• This object represents the USB connection
• In the example this connection is connected on com port

1, with baud rate at 9600bps, 8 bits per character, no
parity, and 1 stop bit

• Next, a DataInputStream object is created to be used for
transmission

• The String sdata is used to store the incoming data
• The connection and inputstream are closed

http://cmer.cis.uoguelph.ca 44

Bluetooth

• BlackBerry 7100, 7250, 7290, and 7520 were the first to support
Bluetooth, version 1.1. All later BlackBerry devices with
Bluetooth wireless technology use version 2.0

• Applications are able to create Bluetooth connections using
the Bluetooth Serial Port Profile on any Bluetooth enabled
BlackBerry device

• Bluetooth Serial Port Profile, part of the JSR 82 implementation
may be used to initiate a server or client Bluetooth serial port
connection to a computer or other Bluetooth enabled devices

• The JSR 82 implementation added some additional Bluetooth
wireless technology profiles that can be used by third-party
applications.
– Object Push Profile (OPP)
– Object Exchange (OBEX)

http://cmer.cis.uoguelph.ca 45

Bluetooth

• Bluetooth API - net.rim.device.api.bluetooth
– BluetoothSerialPortListener
– BluetoothSerialPort
– BluetoothSerialPortInfo

• Unlike USB connections, Bluetooth connections are not
possible to simulate

• Bluetooth development kits for the BlackBerry
simulation environment such as Casira available from
Cambridge Silicon Radio (CSR)

• More on Casira at
http://www.btdesigner.com/devcasira.htm

http://cmer.cis.uoguelph.ca 46

