
BlackBerry Event
Handling

Overview

• Introduction
• Typical Application Model
• Event Listeners
• Responding to UI Events
• Touch Screen Events
• Touch Screen Gestures

http://cmer.cis.uoguelph.ca 2

Introduction

• Event handling deals with the interaction with UI
components within an application.

• This is accomplished via BlackBerry event listeners.
• Similar implementation to event handling in Java.
• The net.rim.device.api.system package contains many

useful listener classes.

http://cmer.cis.uoguelph.ca 3

Typical
Application Model

http://cmer.cis.uoguelph.ca 4

Event Listeners

• Many types of listeners:
– TrackwheelListener – ‘listens’ for trackwheel events
– KeyListener – ‘listens’ for keyboard events
– Others include:

• AlertListener
• GlobalEventListener
• HolsterListener
• IOPortListener
• SystemListener
• TouchEventListener
• ChangeListeners (field, focus, scroll)
• etc.

• See net.rim.device.api.system package for more.

http://cmer.cis.uoguelph.ca 5

TrackwheelListener

• A listener interface for receiving trackwheel events.
• Use of this interface is strongly discouraged now.
• Instead of using this interface, developers are strongly

encouraged to use the "navigation" methods in the
Screen class to receive such notifications.
– This is done by extending the Screen class and

providing custom implementations of the following 3
methods:

• Screen.navigationClick(int, int)
• Screen.navigationUnclick(int, int)
• Screen.navigationMovement(int, int, int, int)

http://cmer.cis.uoguelph.ca 6

KeyListener

• The listener interface for receiving keyboard events.
• Used to handle events from the device hardware

interface such as the keypad and trackwheel.
• Beneficial for game development where often the keys of

the device become the controls.
• In order to support different locales in the future, apps

should use the keyChar notification to determine which
characters a user has pressed. Although in English there
is a high correspondence between keys and characters,
in other languages there might not be.
– For example, using hirgana or katakana maps, it

would often take two keys to generate one character

http://cmer.cis.uoguelph.ca 7

KeyListener (Cont.)

• keyChar(char key, int status, int time)
– Invoked when a sequence of zero or more keyDowns

generates a character.
• keyDown(int keycode, int time)

– Invoked when a key has been pressed.
• keyRepeat(int keycode, int time)

– Invoked when a key has been repeated.
• keyStatus(int keycode, int time)

– Invoked when the ALT or SHIFT status has changed.
• keyUp(int keycode, int time)

– Invoked when a key has been released.

http://cmer.cis.uoguelph.ca 8

KeyListener Example

• In this next example we will use the keypad and trackwheel to
control specific functions of a typical game scenario.

• The five operations that can take place in this game scenario
are:
– Move Left
– Move Right
– Move Up
– Move Down
– Shoot

• Code sample provided on the next slide and will be discussed
afterwards.

http://cmer.cis.uoguelph.ca 9

KeypadListener Example

import net.rim.device.api.ui.*;
import net.rim.device.api.ui.component.*;
import net.rim.device.api.ui.container.*;
import net.rim.device.api.system.KeypadListener;
import net.rim.device.api.system.KeyListener;

class KeypadListenerExample extends UiApplication {

private static RichTextField command;

KeypadListenerExample() {
MainScreen mainScreen = new MyScreen();
command = new RichTextField("Waiting for command...");
mainScreen.add(command);
pushScreen(mainScreen);

}

http://cmer.cis.uoguelph.ca 10

KeypadListener
Example (Cont.)

public static void main(String[] args) {
KeypadListenerExample app = new KeypadListenerExample();
app.enterEventDispatcher();

}

static class MyScreen extends MainScreen {
public boolean keyChar(char key, int status, int time) {

if(key == 'd'){
command.setText("Move Left");

}else if(key == 'j'){
command.setText("Move Right");

}else if(key == 't'){
command.setText("Move Up");

}else if(key == 'b'){
command.setText("Move Down");

}else if(key == 'g'){
command.setText("Shoot!");

}
return true;

}

http://cmer.cis.uoguelph.ca 11

KeypadListener
Example (Cont.)

protected boolean navigationMovement(int dx, int dy, int status, int time) {
if(dx < 0 && dy == 0) {

command.setText("Move Left");
} else if(dx > 0 && dy == 0) {

command.setText("Move Right");
} else if(dx == 0 && dy > 0) {

command.setText("Move Up");
} else if(dx == 0 && dy < 0) {

command.setText("Move Down");
}
return true;

}
protected boolean navigationClick(int status, int time) {

command.setText("Shoot!");
return true;

}
}

}

http://cmer.cis.uoguelph.ca 12

KeypadListener
Example Explained

• The keyChar method
– Simply detects the character that was submitted to the

device by comparing the key parameter.
– The other input parameters are not needed for this

occasion.
– The status parameter can tell us information such as

whether the shift or caps lock inputs are enabled.
– The time parameter is the number of milliseconds since the

device was turned on.
– Our implementation of this method simply changes the

RichTextField on the screen to read the command
operation.

• eg. If “d” was pressed then print out “Move left”
– We return true because this informs that the event was

consumed

http://cmer.cis.uoguelph.ca 13

KeypadListener
Example Explained (Cont.)

• The navigationMovement method
– Responds to the trackwheel events.
– It takes a status and time parameter equivalent to the keyChar

method previously discussed.
– It also takes X and Y coordinates that specify the change in

movement from the current position.
• A positive X and Y value means right and down respectively.
• A negative X and Y value means left and up respectively.

– With this in mind we are able to detect the direction of the
trackwheel and then specify the appropriate command.

– We ignore X and Y values of zero which means that a roll of the
trackwheel must be in the perfect direction (i.e left, right, up down)
and that diagonal movements are not computed.

– We return true to show that the event was consumed.

http://cmer.cis.uoguelph.ca 14

KeypadListener
Example Explained (Cont.)

• The navigationClick method
– Responds to the input from a trackwheel click.
– Again, this method also takes a status and time

parameter equivalent to the keyChar and
navigationMovement methods previously discussed.

– Invokes the “shoot” command after receiving a
trackwheel click.

– Like the previous methods we return true to indicate
that the event has been consumed

http://cmer.cis.uoguelph.ca 15

AlertListener

• Provides functionality for receiving alert events.
• Useful in game development and media applications
• Use Application.addAlertListener(AlertListener) to

receive notifications via this interface.
• audioDone(int reason)

– Invoked when an audio alert ends.
• buzzerDone(int reason)

– Invoked when a buzzer alert ends.
• vibrateDone(int reason)

– Invoked when a vibrate alert ends.

http://cmer.cis.uoguelph.ca 16

GlobalEventListener

• The listener interface for receiving global events.
• Arbitrary applications may use global events for inter-

process communication (IPC).
• The BlackBerry OS can also generate global events,

such as those defined by the ServiceBook API.
• eventOccurred(long guid, int data0, int data1,

Object object0, Object object1)
– Invoked when the specified global event occurred.
– The eventOccurred method provides two object

parameters and two integer parameters for supplying
details about the event itself. The developer
determines how the parameters will be used.

http://cmer.cis.uoguelph.ca 17

GlobalEventListener
(Cont.)

• For example, if the event corresponded to sending or receiving a mail
message, the object0 parameter might specify the mail message
itself, while the data0 parameter might specify the identification
details of the message, such as an address value.

• Parameters:
– guid - The GUID of the event.
– data0 - Integer value specifying information associated with the

event.
– data1 - Integer value specifying information associated with the

event.
– object0 - Object specifying information associated with the event.
– object1 - Object specifying information associated with the event.

http://cmer.cis.uoguelph.ca 18

HolsterListener

• The listener interface for receiving holster events.
• Useful in power management to increase battery life
• Implement this interface to listen for holster events, such

as the insertion or removal of the BlackBerry device from
the holster.

• inHolster()
– Invoked when the device is put in the holster.

• outOfHolster()
– Invoked when the device is removed from the holster.

http://cmer.cis.uoguelph.ca 19

IOPortListener

• The listener interface for receiving I/O port events.
• connected()

– Invoked when the port is connected.
• dataReceived(int length)

– Invoked when the port's receive queue has changed from empty
to not empty.

• dataSent()
– Invoked when the port's transmit queue becomes completely

empty.
• disconnected()

– Invoked when the port is disconnected.
• patternReceived(byte[] pattern)

– Invoked when a registered pattern is received.
• receiveError(int error)

– Invoked when a communication error has occurred.

http://cmer.cis.uoguelph.ca 20

SystemListener

• The listener interface for receiving system events.
• batteryGood()

– Invoked when the internal battery voltage has returned to
normal.

• batteryLow()
– Invoked when the internal battery voltage falls below a

critical level.
• batteryStatusChange(int status)

– Invoked when the internal battery state has changed.
• powerOff()

– Invoked when the user is putting the device into a power off
state.

• powerUp()
– Invoked when the device has left the power off state.

http://cmer.cis.uoguelph.ca 21

SystemListener

• The listener interface for receiving system events.
• Useful in developing application for accessories
• backlightStateChange(boolean on)

– Invoked when the backlight state changes.
• cradleMismatch(boolean mismatch)

– Invoked when a USB device has been placed in a serial cradle.
• fastReset()

– Invoked when a fast reset occurs.
• powerOffRequested(int reason)

– Invoked when the OS requests that the device power be turned
off.

• usbConnectionStateChange(int state)
– Invoked when the USB connection state changes.

http://cmer.cis.uoguelph.ca 22

Field Focus Changes

• The FocusChangeListener specifies what actions should occur
when a field gains, loses, or changes focus.

• Implement FocusChangeListener to listen for field focus
changes

• Your implementation of FocusChangeListener should specify
what action occurs when the field gains, loses, or changes the
focus by implementing focusChanged()

• Assign your implementation to a Field by invoking
setChangeListener()

• Eg.
FocusListener myFocusChangeListener = new
FocusListener();
myField.setFocusListener(myFocusChangeListener);

http://cmer.cis.uoguelph.ca 23

Field Focus Changes (Cont.)

Example focus listener class:

private class FocusListener implements FocusChangeListener {
public void focusChanged(Field field, int eventType) {

if (eventType == FOCUS_GAINED) {
// Perform action when this field gains the focus.

}
if (eventType == FOCUS_CHANGED) {

// Perform action when the focus changes for this
field.

}
if (eventType == FOCUS_LOST) {

// Perform action when this field loses focus.}
}

}
}

http://cmer.cis.uoguelph.ca 24

Field Property Changes

• Similar to field focus change implementation
• Implement the FieldChangeListener interface.
• Assign your implementation to a field by invoking

setChangeListener().
• Eg.

FieldListener myFieldChangeListener = new
FieldListener();
myField.setChangeListener(myFieldChangeListener);

http://cmer.cis.uoguelph.ca 25

Field Property
Changes (Cont.)

private class FieldListener implements
FieldChangeListener {
public void fieldChanged(Field field, int context) {

if (context != FieldChangeListener.PROGRAMMATIC)
{

// Perform action if user changed field.
} else {

// Perform action if application changed field.
}

}
}
// …

http://cmer.cis.uoguelph.ca 26

Responding to UI Events

• Manage navigation events by extending the
net.rim.device.api.ui.Screen class (or one of its
subclasses) and overriding the following navigation
methods:
– navigationClick(int status, int time)
– navigationUnclick(int status, int time)
– navigationMovement(int dx, int dy, int status, int time)

• Use the new Screen navigation methods and avoid
using the TrackwheelListener

http://cmer.cis.uoguelph.ca 27

Responding to
UI Events (Cont.)

• The status parameter of the navigation methods contains
information about the event.

• To interpret this information, perform a bitwise AND
operation on the status parameter in implementation of
one of the navigationClick, navigationUnclick, or
navigationMovement methods of the Screen or Field
classes.

• See next slide for an example to determine the type of
input mechanism that triggered an event.

http://cmer.cis.uoguelph.ca 28

Responding to
UI Events (Cont.)

• In implementation of the navigationClick(int status, int time) method,
create code such as the following:

public boolean navigationClick(int status, int time) {
if ((status & KeypadListener.STATUS_TRACKWHEEL) ==
KeypadListener.STATUS_TRACKWHEEL) {

//Input came from the trackwheel
} else if ((status & KeypadListener.STATUS_FOUR_WAY) ==
KeypadListener.STATUS_FOUR_WAY) {

//Input came from a four way navigation input device
}
return super.navigationClick(status, time);

}

http://cmer.cis.uoguelph.ca 29

Responding to
UI Events (Cont.)

• Respond to BlackBerry® device user interaction
– Use the Screen class and its subclasses to provide a

menu for the BlackBerry device users to perform
actions.

• Provide menu support
– Extend the Screen class.

http://cmer.cis.uoguelph.ca 30

Responding to
UI Events (Cont.)

• Provide screen navigation when using a FullScreen or Screen
– Creating a MainScreen object provides default navigation

to the application.
– Avoid using buttons or other UI elements that take up

space on the screen.
– Specify the DEFAULT_MENU and DEFAULT_CLOSE

parameters in the constructor to provide default navigation.
FullScreen fullScreen = new FullScreen(DEFAULT_MENU |
DEFAULT_CLOSE);

http://cmer.cis.uoguelph.ca 31

Responding to
UI Events (Cont.)

• Provide menu support in an application that uses the
TrackwheelClick() method of the TrackwheelListener
– Use an extension of the Screen class.
– In the constructor of the Screen class extension,

invoke the Screen class constructor using the
DEFAULT_MENU property.

– Ensure that extension of the makeMenu() method of
the Screen class invokes Screen.makeMenu() and
adds the required menu items for the current UI
application.

http://cmer.cis.uoguelph.ca 32

Responding to
UI Events (Cont.)

• Manage selected menu items.
– Two options

• Option 1
– Override the onMenu()method.
– In your extension of makeMenu() cache a reference to the

“menu” arameter in the screen.
– In your extension of OnMenu(), invoke Screen.OnMenu().
– In your code, inspect the cached Menu object to determine

which menu item the BlackBerry® device user selected.
– Use the result of this inspection to trigger the appropriate

menu action.

http://cmer.cis.uoguelph.ca 33

Responding to
UI Events (Cont.)

• Option 2
– Extend the MenuItem class.

private MenuItem viewItem = new MenuItem("View
Message", 100, 10);

– Create a run() method that implements the behavior that
you expect to occur when the BlackBerry device user clicks
a menu item. When a BlackBerry device user selects a
MenuItem, this action invokes the run() method.
public void run() {

Dialog.inform("This is today’s message");
}

– If you do not use localization resources, override toString()
to specify the name of the menu item.

http://cmer.cis.uoguelph.ca 34

Responding to
UI Events (Cont.)

– When you add your own menu items, define a Close menu item
explicitly.
private MenuItem closeItem = new MenuItem("Close", 200000, 10);
public void run() {

onClose();
}

– To add the menu items to the screen, override
Screen.makeMenu(), adding instances of the extended MenuItem
class.
protected void makeMenu(Menu menu, int instance) {

menu.add(viewItem);
menu.add(closeItem);

}
– In your extension of the MenuItem class, do not override the

onMenu()method.

http://cmer.cis.uoguelph.ca 35

Touch Screen Events

• New BlackBerry devices support touch screen events
such as the Storm

• Can handle simple touch events:
– Clicks, Up, Down, etc.

• Can also handle more complicated gestures:
– Swipes, Hovering, etc.

• Classes:
– net.rim.device.api.ui.TouchEvent
– net.rim.device.api.ui.TouchGesture

http://cmer.cis.uoguelph.ca 36

Touch Screen Events

• Can be applied to:
– Screens
– Managers
– Fields

http://cmer.cis.uoguelph.ca 37

Types of Touch Screen Events

Events
• Up
• Down
• Click
• Unclick
• Move
• Cancel

Gestures
• Tap
• Swipe North
• Swipe South
• Swipe East
• Swipe West
• Hover

http://cmer.cis.uoguelph.ca 38

Touch Screen Gestures

• Hover – Holding your finger on an item

• Swipe – Slide your finger from one point to another

• Tap – Touch the screen twice quickly

http://cmer.cis.uoguelph.ca 39

