
GUI Components
Part I



Overview

• UiApplication Class
• MainScreen Class
• BitmapField Class
• ButtonField Class
• CheckboxField Class
• Dialog Class
• EditField Class
• GuageField Class
• LabelField Class
• Menu Class
• RadioButtonField Class
• RadioButtonGroup
• TextField Class

http://cmer.cis.uoguelph.ca 2



UiApplication Class

• public class HelloWorld extends UiApplication
• Base class for all device applications that provide a user 

interface.
• A UI application maintains a stack of Screen objects.
• As it pushes screens onto the stack, it draws them on 

top of any other screens already on the stack. 
• When the application pops a screen off the stack, it 

redraws the underlying screens as necessary. 
• Only the screen on the top of the stack receives input 

events.

http://cmer.cis.uoguelph.ca 3



UiApplication Class (Cont.)

• Each screen may appear only once in the display stack.

• The application throws a runtime exception if you attempt to 
push a single screen onto the stack more than once.

• A UI application must follow rules similar to those of traditional 
Swing applications.
– Only one thread at a time (generally, the event-dispatching 

thread) may gain access to an interface component at once. 
– If you need access to the UI from outside event-handling or 

drawing code, then you can use the invokeLater() or 
invokeAndWait() methods. 

http://cmer.cis.uoguelph.ca 4



UiApplication Class (Cont.)

• pushScreen(new MScreen());
– This will push the MScreen instance onto the UI stack 

to be displayed.

• For more information on UiApplication, refer to the 
BlackBerry JDE API Specification.
– net.rim.device.api.ui.UiApplication

http://cmer.cis.uoguelph.ca 5



MainScreen Class

• class MScreen extends MainScreen
• A full screen providing features common to standard 

RIM device applications.
• MainScreen objects contain a title section, a separator 

element, and a main scrollable section.
• For more information on MainScreen, refer to the 

BlackBerry JDE API Specification.
– net.rim.device.api.ui.container.MainScreen
– Extends net.rim.device.api.ui.container.FullScreen

http://cmer.cis.uoguelph.ca 6



net.rim.device.api.ui.component

• Provides a library of prebuilt interface components and 
controls for constructing usable UI applications
– textfields
– labels
– buttons
– etc..

• For more information on this library and a list of its ui
components, refer to the BlackBerry JDE API 
Specification.
– net.rim.device.api.ui.component

http://cmer.cis.uoguelph.ca 7



BitmapField Class

• Displays a bitmap.
• The Blackberry JDE supports GIF, JPG, and PNG image 

formats;
• PNG files are the most efficient file format for BlackBerry 

devices with limited memory.
• By default this field uses only enough area to fit its contained

bitmap.
• If you specify an alignment style at construction, the field 

always uses the full width of the controlling manager's layout.
• By specifying the Field.FOCUSABLE style at construction, you 

can make this field focusable.

http://cmer.cis.uoguelph.ca 8



BitmapField (Cont.)

• To add a graphic to your application, you must first add 
the graphic file to your project.

• In your application, you can refer to your graphic by its 
name, by using Bitmap.getBitmapResource().

• After you have the bitmap, you can add it to a bitmap 
field and then add that field to the screen.

http://cmer.cis.uoguelph.ca 9



BitmapField Example

Bitmap b = new Bitmap(200, 40);
b = Bitmap.getBitmapResource("bb.gif");
BitmapField bf = new BitmapField(b);
bf.setSpace(Graphics.getScreenWidth()/2 - b.getWidth()/2, 

Graphics.getScreenHeight()/2 - b.getHeight()/2 );
add(bf);

http://cmer.cis.uoguelph.ca 10



BitmapField Example Explained

• Assumption is made that a GIF image named bb.gif has 
previously been added to the project.

• First, a bitmap of size 200 x 40 is created, which mimics 
the actual size of bb.gif.

• Then a BitmapField is created from that bitmap image
• The BitmapField is then centered using setSpace, and 

added finally to the screen.

http://cmer.cis.uoguelph.ca 11



ButtonField Class

• Displays a button.
• Contains a button control.
• When the user presses a ButtonField the 

FieldChangeListener that was set by invoking 
setChangeListener() is notified by its fieldChanged() 
method being invoked.

• Refer to the BlackBerry JDE API Specification for more 
information and how this is done.
– net.rim.device.api.ui.component.ButtonField

http://cmer.cis.uoguelph.ca 12



ButtonField Example

ButtonField btn = new ButtonField("myButton");
btn.setChangeListener(new ButtonListener()); add(btn);

final class ButtonListener implements FieldChangeListener
{
public void fieldChanged(Field field, int context) {

ButtonField btn = (ButtonField) field;
Status.show("Button pressed: " + btn.getLabel());

}
}

http://cmer.cis.uoguelph.ca 13



ButtonField
Example Explained

• The previous code sample demonstrates how to create a 
simple ButtonField and attach a listener to it.

• First a button called “myButton” is created.
• Next, a custom listener is added to the button.
• This listener would “listen” to this button’s events, if it 

has been clicked it will display the message “Button 
pressed: myButton” in the status field.

• Finally, the button is added on to the screen.

http://cmer.cis.uoguelph.ca 14



CheckboxField Class

• Displays a checkbox before the text label.
• In the default font, this box appears either empty, or 

containing a check mark, depending upon the state of 
the field.

• When this field has focus, the box appears inverted.
• Pressing the spacebar when a checkbox field has the 

focus toggles its state.

http://cmer.cis.uoguelph.ca 15



CheckboxField Example

CheckboxField chk = new CheckboxField("Checkbox 1", 
true);

CheckboxField chk2 = new CheckboxField("Checkbox 2", 
false); 

add(chk);
add(chk2);
• The above sample code creates two checkboxes.
• The first checkbox is selected by default while the 

second is not.

http://cmer.cis.uoguelph.ca 16



Dialog Class

• Provides a dialog box with predefined configurations.
• To get a standard, predefined dialog use:

– alert(java.lang.String)
– ask(int)
– inform(java.lang.String)

• These pop up a predefined dialog and wait for user 
input.

• To get a more customized dialog, instantiate this class or 
extend it.

• Pressing ESCAPE returns CANCEL, but only if it was one 
of the choices specified in the values array.

http://cmer.cis.uoguelph.ca 17



Dialog Examples

• Dialog.alert("Bye World!");
– Displays an alert dialog box that shows the message 

“Bye World!”
• Dialog.ask(Dialog.D_YES_NO, “Exit?”);

– Prompts the user with the message “Exit?” and the 
options of either “Yes” or “No”

• Dialog.inform(“Connection lost.”);
– Displays a notification dialog with the message 

“Connection lost.”

http://cmer.cis.uoguelph.ca 18



EditField Class

• An editable simple text field with no formatting.
• Displays a label in front of the text contents.
• If the contents occupy more than one line the text will flow 

around the label.
• The caret position behaves as if it were between characters 

in the text contents, however it appears as a full inverted 
box on the character immediately following the caret.

• If this field is Field.EDITABLE, typing inserts text into the 
contents at the caret position.

• The BACKSPACE character removes the character prior to 
the caret, and the DELETE character removes the character 
after the caret.

• Example:
EditField edit = new EditField("Username: ", "");
add(edit);

http://cmer.cis.uoguelph.ca 19



GaugeField Class

• Displays a label followed by a gauge bar.
• A GaugeField object can be used to display a progress 

bar while the application processes information.
• The gauge optionally has text overlayed over it 

indicating the percentage the gauge represents.
• If this field is built as Field.EDITABLE, the user can 

employ the trackwheel to change the value by ALT-
rolling.

• If Ui.getIncreaseDirection() returns -1, then rolling the 
trackwheel down decreases the value.

• If Ui.getIncreaseDirection() returns +1, then rolling the 
trackwheel up increases the * value. 

http://cmer.cis.uoguelph.ca 20



GaugeField Example

MainScreen mainScreen = new 
MainScreen(Field.USE_ALL_HEIGHT|Field.FIELD_LEFT);

GaugeField gaugeField = new GaugeField ("PROGRESS ", 0, 30, 
15, Field.FOCUSABLE);

gaugeField.setEditable(true);
mainScreen.add (gaugeField);

GaugeField gaugeField2 = new GaugeField ("PERCENT ", 0, 30, 
15, GaugeField.PERCENT);

mainScreen.add (gaugeField2);

GaugeField gaugeField3 = new GaugeField ("NO_TEXT ", 0, 30, 
15, GaugeField.NO_TEXT);

mainScreen.add (gaugeField3);
pushScreen (mainScreen);

http://cmer.cis.uoguelph.ca 21



GaugeField Example Explained

• The previous code sample creates three different 
progress bars

• the first GaugeField is the default progress bar. It is set 
as editable so that the user can change the progress 
setting.

• The second progress bar shows the progress in terms of 
percentages.

• The last progress bar does not display any text in the 
progress bar and displays a blank gauge.

• All three progress bars have a minimum value of 0 and 
maximum value of 30.

http://cmer.cis.uoguelph.ca 22



LabelField Class

• Displays a label.

• Optionally focusable.

• Optionally can shorten text (with an ellipsis) that 
is too long.

http://cmer.cis.uoguelph.ca 23



LabelField Example

add(new LabelField("LabelField")); 

add(new LabelField("LabelField 2", 0, -1, 
Field.FIELD_RIGHT));

LabelField lbl = new LabelField("LabelField 3", 0, -1, 
Field.FIELD_HCENTER); 

Font fnt = this.getFont().derive(Font.BOLD | 
Font.ITALIC);

lbl.setFont(fnt);
add(lbl);

http://cmer.cis.uoguelph.ca 24



LabelField Example Explained

• The previous code sample creates three different 
LabelFields

• The first LabelField is the default label. It is horizontally-
aligned to the left and uses the default font.

• The second LabelField is horizontally-aligned to the 
right, again with the default font.

• The last LabelField is horizontally-centered on the 
screen with italicized fonts.

http://cmer.cis.uoguelph.ca 25



ListField Class

• Contains rows of selectable list items.
• A ListField uses a class that implements the 

ListFieldCallback interface to perform drawing tasks.
• A ListField must register a class that implements the 

ListFieldCallback interface using the setCallback method 
before the class can be used.

• After registration, when a ListField must display an item 
in its list, it invokes the appropriate methods of the 
registered callback class.

http://cmer.cis.uoguelph.ca 26



Menu Class

• Displays a menu in the top right corner of the screen.
• A menu is a vertically arranged list of items.
• The currently selected menu item is marked by inverting its rectangle.
• To choose the selected menu item, one can either click the 

trackwheel or press ENTER.
• To dismiss the menu without choosing an item, one can press 

ESCAPE.
• Menus also support prefix searching; if one presses a letter key, the 

next menu item that starts with that character gets selected.
• A SeparatorField object can be added to a menu in the following 

ways: 
– use the add(ContextMenu, boolean) method and set the 

addSeparator argument to true. 
– use the addSeparator() method to add a separator.

http://cmer.cis.uoguelph.ca 27



PasswordEditField Class

• This field stores the password as plain text but draws it as a series of 
asterisks, one for each character cluster (group of characters treated 
as one after diacritics and ligatures have been handled).

• This field does not have any automatic input replacement, so the
typed text is exactly what is typed.

• AutoCaps, AutoText, AutoPeriod, and any other transformation are 
turned off.

• Holding a key and rolling the wheel is not allowed.
• This field does not support copy or cut operations.
• By default, this field supports all the available characters.
• You can restrict this by applying a TextFilter.
• Example:

PasswordEditField pass = new PasswordEditField("Password: ", "");
add(pass);

http://cmer.cis.uoguelph.ca 28



RadioButtonField Class

• Displays a circular button to the left of the text label.
• With the default font, this button is either empty or contain a solid 

circle depending on the state of the field.
• When this field has the focus, the button appears inverted.
• You group together Radio buttons fields using the RadioButtonGroup

class.
• At most one button within the group can be selected at any one time.
• The group can be programmatically created or changed so that no 

button is selected, but a user cannot deselect all fields in the group.
• If the control is EDITABLE (radio button fields are created this way by 

default), pressing ENTER selects this field and deselects the 
previously selected radio button field in the group.

http://cmer.cis.uoguelph.ca 29



RadioButtonGroup Class

• Groups a set of related radio button fields.
• The index of a RadioButtonField in the group does not 

necessarily correspond to the order of the buttons on 
screen.

• Indices are assigned in the order that buttons are added 
to the group.

• Each Radio button field can belong to only one group at 
a time.

http://cmer.cis.uoguelph.ca 30



RadioButton Example

RadioButtonGroup rbg = new RadioButtonGroup();
RadioButtonField rbf1 = new RadioButtonField("Radio 1", 

rbg, false);
RadioButtonField rbf2 = new RadioButtonField("Radio 2", 

rbg, true);
RadioButtonField rbf3 = new RadioButtonField("Radio 3", 

rbg, false);
add(rbf1);
add(rbf2);
add(rbf3);

http://cmer.cis.uoguelph.ca 31



RadioButton
Example Explained

• The RadioButtonField works with the RadioButtonGroup
to function just as any radio button does on a web form.

• First the RadioButtonGroup is created.
• Then each RadioButtonField is created while assigning it 

to the group.
• Finally, each radio button is added to the screen (not the 

button group).
• Notice that the label for the radio button and the initial 

status (selected/unselected) with a true or false value are 
provided.

http://cmer.cis.uoguelph.ca 32



RichTextField Class

• A readonly text field for showing text in a variety of fonts 
and formatting.

• When building a rich text field that contains formatted 
text, you specify a list of offsets.

• These offsets define the boundaries of the various 
formatting regions for the field's text.
– The first offset position in the list marks the 

beginning of the field's text (thus is zero), and the last 
offset position in the list marks the end of the field's 
text (this is equal to the field's text length).

• The field also has an attribute list, corresponding to the 
regions described in the offset list.

• Each element's value in the attribute list is an index into 
the fonts list.

http://cmer.cis.uoguelph.ca 33



RichTextField Class (Cont.)

• The fonts list contains the various formatting styles 
used by the field's contained text.

• Any font element with a null value that's used by the 
attribute list simply indicates that the field should 
draw the text region using the default font.

• You can also build a RichTextField with a list of 
cookie objects corresponding to various regions, as 
determined by the offsets list.

• You can use the Field.NON_FOCUSABLE style to 
build a rich text field that cannot accept the focus.

• See the BlackBerry Application Developer Guide 
Volume 1 for more information on formatting text in 
a RichTextField.

http://cmer.cis.uoguelph.ca 34



RichTextField Example

add(new RichTextField("RichTextField"));

String str[] = new String[] {"RichTextField:", "Value"};
int off[] = new int[] {0, str[0].length(), str[0].length() + 

str[1].length()};
byte attr[] = new byte[] {0, 1};
FontFamily fontfam[] = FontFamily.getFontFamilies();
Font fon[] = new Font[2]; fon[0] = 

fontfam[0].getFont(FontFamily.SCALABLE_FONT, 16); 
fon[1] = fontfam[1].getFont(FontFamily.SCALABLE_FONT, 18);
add(new RichTextField(str[0] + str[1], off, attr, fon, 

RichTextField.TEXT_ALIGN_HCENTER));

http://cmer.cis.uoguelph.ca 35



RichTextField
Example Explained

• The previous code sample creates two different 
RichTextFields.

• The first RichTextField is the default. It is horizontally-
aligned to the left and uses the default font.

• The second RichTextField is created by specifying a list 
of texts to be displayed, their appropriate offets, list of 
fonts to be used, and is horizontally-centered.

http://cmer.cis.uoguelph.ca 36



SeparatorField Class

• A field which draws a horizontal line across  
its width.

• Displays a separator, currently always a horizontal line.
• A SeparatorField object can be added to a menu in the 

following ways:
– use the Menu.add(ContextMenu, boolean) method and set 

the addSeparator argument to true.
– use the Menu.addSeparator() method to add a separator.

• Example:
add(new SeparatorField());

http://cmer.cis.uoguelph.ca 37



Status Class

• Simple dialog to show ongoing status.
• This extension of PopupScreen lets you show a 

simple status screen which the user can 
dismiss with a trackwheel click or by typing 
SPACE or ESCAPE.

• Example:
Status.show(“This is the current status.”);

http://cmer.cis.uoguelph.ca 38



TextField Class

• Displays a label in front of the text contents.
• If the contents occupy more than one line the text will flow around the 

label.
• The caret position behaves as if it were between characters in the text 

contents, however it appears as a full inverted box on the character 
immediately following the caret.

• The trackwheel moves the focus caret in the major direction (usually 
vertical), and using alt+trackwheel will move the focus caret in a less 
significant direction (usually horizontal).

• If this field is Field.EDITABLE, typing inserts text into the contents at the 
caret position.

• The BACKSPACE character removes the character prior to the caret, and 
the DELETE character removes the character after the caret.

• Some subclasses of this may choose to support special symbols:
– typing a Sym brings up the symbol screen from which the user can select a symbol.
– Depending on the keyboard Sym could alternatively be Alt+Space or Alt+ZX.

http://cmer.cis.uoguelph.ca 39


