
http://cmer.cis.uoguelph.ca Page 1 of 9

Objective

The objective to this lab is to get experience with:

1. BlackBerry User interface APIs

2. Displaying user interface components including button fields, choice fields,

option fields, data fields, gauge fields and separator field.

3. Handling events in user interface components

4. Develop a quiz application using these components

Experiment 1 Develop a quiz application using User Interface components

In this experiment, you will learn how to write an application for BlackBerry devices

using the BlackBerry User Interface APIs. You will develop a quiz application and get

experience with button fields, choice fields, option fields, data fields, gauge fields and

separator field. Figures 1 and 2 demonstrate how your application should be appeared on

the screen.

 Figure 1- First screen Figure 2 – Second screen

To start the experiment, do the following steps:

1. Create a class extended from net.rim.device.api.ui.UiApplication class. Name it

“Quiz_App”.

http://cmer.cis.uoguelph.ca Page 2 of 9

2. Write the constructor and main() methods and add the required codes to these

methods.

3. Create the first screen class and name it “FirstScreen”. Figure 1 depicts how it

should look like.

final class FirstScreen extends MainScreen

 {

 ButtonField _startBtn;

 public FirstScreen() { }

}

4. FirstScreen consists of the following UI components: RichTextField for

displaying “Introduction to Programming”, LabelField for the title “Quiz”,

DateField for “Date: ”, SeparatorField and ButtonField. In order to handle UI

objects events, you must add the listener interface to the class. This is done by

implementing “FieldChangeListener” interface. By doing that, your class is able

to listen to UI objects events and does the appropriate action when an event is

fired. For instance, in this experiment when you click on the “Start” button, the

second screen must be displayed (Fig. 2).

final class FirstScreen extends MainScreen implements FieldChangeListener

{

 public FirstScreen()

 {

super();

……

 }

}

5. When you implement the listener interface in your class, you must override its

routines as well.

final class FirstScreen extends MainScreen implements FieldChangeListener

{

 public FirstScreen()

 {….}

public void fieldChanged (Field field, int context)

{ …. }

6. Set the title. This is done by LabelField component.

final class FirstScreen extends MainScreen implements FieldChangeListener

{

 public FirstScreen()

 {

super();

http://cmer.cis.uoguelph.ca Page 3 of 9

LabelField title = new LabelField("Quiz", LabelField.ELLIPSIS |

LabelField.USE_ALL_WIDTH);

 setTitle(title);

 }

}

7. RichTextField creates a read-only field that can be formatted with different styles

and font. Create an instance of this object and add it to the screen as follows:

add (new RichTextField("Introduction to Programming ",

RichTextField.TEXT_ALIGN_HCENTER | RichTextField.NON_FOCUSABLE));

TEXT_ALIGN_HCENTER and NON_FOCUSABLE in the above code are two

field styles defined for RichTextField. They determine the field is centered

horizontally and is non-focusable. For getting more information, go to “Help”

menu in JDE, then select “API Reference”.

8. The following code creates a blank line.
add(new RichTextField(""));

9. DateField is an editable component for presenting date and time. Create an

instance of this component and add it to the screen as follows:

add(new DateField("Date: ",System.currentTimeMillis() + 3600000,

DateField.NON_FOCUSABLE | DateField.DATE_TIME));

DateField.NON_FOCUSABLE and DateField.DATE_TIME are DateField styles

determining that the component is non-focusable and represents date and time. You can

also change DateField.DATE_TIME to DateField.DATE for presenting the date only or

to DateField.TIME for presenting the time.

10. ButtonField displays a button. Create an instance and add it to the screen as

follows.

_startBtn = new ButtonField("Start", ButtonField.FOCUSABLE |

ButtonField.FIELD_HCENTER);

_startBtn.setChangeListener(this);

add(_startBtn);

Also, you must use a “FieldChangeListener” interface to get notifications when

the user presses the button (done in Steps 4 and 5) and set a listener for this

component using “setChangeListener” method as follows:
_startBtn.setChangeListener(this);

http://cmer.cis.uoguelph.ca Page 4 of 9

11. At the last, your code looks like as follows:

final class FirstScreen extends MainScreen implements FieldChangeListener

{

 public FirstScreen()

 {

super();

LabelField title = new LabelField("Quiz", LabelField.ELLIPSIS |

LabelField.USE_ALL_WIDTH);

 setTitle(title);

add(new RichTextField(""));

add(new RichTextField("Introduction to Programming ",

RichTextField.TEXT_ALIGN_HCENTER |

RichTextField.NON_FOCUSABLE));

add(new RichTextField(""));

add(new DateField("Date: ",System.currentTimeMillis() + 3600000,

DateField.NON_FOCUSABLE | DateField.DATE_TIME));

add(new SeparatorField());

_startBtn = new ButtonField("Start",ButtonField.FOCUSABLE |

ButtonField.FIELD_HCENTER);

_startBtn.setChangeListener(this);

add(_startBtn);

 }

 public void fieldChanged (Field field, int context)

 { …. }

}

12. The next step is creating the second screen (See Figure 2). For this purpose,

extend MainScreen and name “QuestionScreen”. Set a title like “Questions” for

the screen.

final class QuestionScreen extends MainScreen {

 public QuestionScreen()

 {

 super();

LabelField title = new LabelField("Questions", LabelField.ELLIPSIS |

LabelField.USE_ALL_WIDTH);

 setTitle(title);

…

 }

}

http://cmer.cis.uoguelph.ca Page 5 of 9

13. As displayed in Figure 2, the first question is a multiple-choice question. For this

purpose, use a RichTextField component for the question and a

RadioButtonGroup component for answers.

//create a question

add(new RichTextField("1. 'For' statement can be done with 'While' : ",

RichTextField.TEXT_ALIGN_LEFT | RichTextField.NON_FOCUSABLE));

//create answers

 RadioButtonGroup Q1 = new RadioButtonGroup();

 add(new RadioButtonField("A. True", Q1,false,RadioButtonField.FOCUSABLE));

 add(new RadioButtonField("B. False", Q1,false,RadioButtonField.FOCUSABLE));

RadioButtonField enables users to select only one entry. A set of

RadioButtonFields can be grouped in one RadioButtonGroup field. First,

construct a RadioButtonGroup, then create two new RadioButton instances for

this group with label, initial state and style and add it to screen.

14. The second question is a choice field which is similar to a drop-down list. For this

purpose, construct an ObjectChoiceField component and add it to the screen as

follows:

add(new ObjectChoiceField(

"2. Which statement causes immediate exit from the loop statements:",

 new String[] { "continue", "break", "exit" },

 0,

 ObjectChoiceField.FIELD_HCENTER)

);

The first argument in ObjectChoiceField is label for this field. The second

argument presents choices for this field. In this experiment, you have three

choices for this question including “continue”, “break” and “exit”. This argument

can be any type of object such as Integer, String and so on. The next argument is

the index of the initially selected value. In this experiment, for example, zero

means the initial selected option is “continue”. The last argument is the style

value for the newly created field.

15. The third question which is an essay question, uses an edit field. An EditField

enables users to type text in the field. So, simply construct an EditField with label,

initial contents and style, and add it to the screen a s follows:
add(new EditField("3. What the continue statement does?" ,

"" , 20 ,

 EditField.FOCUSABLE));

http://cmer.cis.uoguelph.ca Page 6 of 9

16. Construct a button field and add it to the screen.
ButtonField _btn = new ButtonField("Submit",ButtonField.FOCUSABLE |

 ButtonField.FIELD_HCENTER);

add(_btn);

17. At the last, you will have the following code for the second screen,

”QuestionScreen”.

final class QuestionScreen extends MainScreen {

 public QuestionScreen()

 {

 super();

LabelField title = new LabelField("Questions", LabelField.ELLIPSIS |

 LabelField.USE_ALL_WIDTH);

 setTitle(title);

 add(new RichTextField("1. 'For' statement can be done with 'While' : ",

 RichTextField.TEXT_ALIGN_LEFT | RichTextField.NON_FOCUSABLE));

RadioButtonGroup Q1 = new RadioButtonGroup();

 add(new RadioButtonField("A. True", Q1, false,

 RadioButtonField.FOCUSABLE));

add(new RadioButtonField("B. False", Q1 ,false,

 RadioButtonField.FOCUSABLE));

 add(new RichTextField(""));

 add(new SeparatorField());

 add(new ObjectChoiceField(

"2. Which statement causes immediate exit from the loop statements:",

new String[] { "continue", "break", "exit" },0

, ObjectChoiceField.FIELD_HCENTER));

 add(new RichTextField(""));

 add(new SeparatorField());

 add(new EditField("3. What the continue statement does?" ,"" ,20

 ,EditField.FOCUSABLE));

 add(new RichTextField(""));

 add(new SeparatorField());

 ButtonField _btn = new ButtonField("Submit", ButtonField.FOCUSABLE |

 ButtonField.FIELD_HCENTER);

 add(_btn);

 }

 }

http://cmer.cis.uoguelph.ca Page 7 of 9

18. The only part remained for this experience is invoking the second screen when a

user clicks on the “Start” button. For this purpose, just you should pop the first

screen and push the second screen. These methods are invoked in “fieldChanged”

method, the listener interface’s method.

public void fieldChanged(Field field, int context) {

 if(field == _startBtn) {

 UiApplication.getUiApplication().popScreen(this);

 QuestionScreen qs = new QuestionScreen();

 UiApplication.getUiApplication().pushScreen (qs);

 }

 }

19. Demo your work to the TA. [5 marks]

Exercise 1 Adding more advance features to your application

In this exercise, you complete your application developed in the Experiment 1 by

adding some advance features such as adding GaugeField, changing font, and adding

another screen to display the result of the quiz. The last screen which you add will

look like follows:

Figure 3- Result screen

To do this exercise, the suggestion process is as follows:

• Reuse the code in the Experiment 1

• Implement a listener interface for the ”QuestionScreen” class just like what

you did for the “FirstScreen” class. This enables your class to listen to the

“Submit” button event when a user clicks on this button. Write the required

codes for handling this event. Perhaps, it is “poping” and “pushing” the

screen.

• Add another screen for displaying the result, name it “ResultScreen”

• In the constructor of this class, write the required code as follows:

http://cmer.cis.uoguelph.ca Page 8 of 9

o Create an instance of the “RichTextField” component and add it to the

screen to display the result

o Create an instance of a “GaugeField” component and add it to the

screen. To create a GuageField, use the following format:

GaugeField percentGauge =

GaugeField(String label, int min, int max,

 int start, long style);

label - Optional label for the gauge (may be null).

min - Bottom of the value range.

max - Top of the value range.

start - Initial progress level of this field.

style - Style value(s) for this field.

For getting more information, just click on Help>API Reference on JDE menu

toolbar.

o Implement the code to calculate the result. To note that each question

in the quiz displayed in Figure 2 has one mark. To retrieve the index of

the currently selected answer for “RadioButtonGroup” and

“ObjectChoiceField” use getSelectedIndex() method.

The third question is an essay question which can not be calculated.

You can always assume one mark for this question under any

circumstances.

• Demo your work to the TA. [5 marks]

Bonus Changing the font

In this exercise, you get the experiment changing the font size. The necessary classes and

methods are included in net.rim.device.api.ui package. To accomplish this, do the

following tasks: [2 marks]

1. Get the default font and the style.

Font font = Font.getDefault();

int style = font.getStyle();

2. Get a list of the system font families

FontFamily fontFamily[] = FontFamily.getFontFamilies();

3. Create a font instance using getFont (). With the getFont () method two

parameters should be specified: style and size. You already got the style from the

default font in Step1. Select any size which you want.

Font font1 = fontFamily[0].getFont(style ,12);

http://cmer.cis.uoguelph.ca Page 9 of 9

4. The RichTextField only accepts an array of fonts. Thus, you should create an

array of fonts and assign the font obtained in Step 3 to the first element

Font fonts[] = new Font[1];

 fonts[0] = font1;

5. Pass the fonts as the fourth argument into the RichTextField constructor

RichTextField richTextField =

new RichTextField (text, offset, attribute, fonts, style);

6. You can also set the “font1” to the default font to be used in your application

Font.setDefaultFont(font1);

